In this article, we investigated the detection of forest vegetation changes during the period of 2017 to 2019 in the Low Tatras National Park (Slovakia) and the Sumava National Park (Czechia) using Sentinel-2 data. The evaluation was based on a time-series analysis using selected vegetation indices. The case studies represented five different areas according to the type of the forest vegetation degradation (one with bark beetle calamity, two areas with forest recovery mode after a bark beetle calamity, and two areas without significant disturbances). The values of the trajectories of the vegetation indices (normalized difference vegetation index (NDVI) and normalized difference moisture index (NDMI)) and the orthogonal indices (tasseled cap greenness (TCG) and tasseled cap wetness (TCW)) were analyzed and validated by in situ data and aerial photographs. The results confirm the abilities of the NDVI, the NDMI and the TCW to distinguish disturbed and undisturbed areas. The NDMI vegetation index was particularly useful for the detection of the disturbed forest and forest recovery after bark beetle outbreaks and provided relevant information regarding the health of the forest (the individual stages of the disturbances and recovery mode). On the contrary, the TCG index demonstrated only limited abilities. The TCG could distinguish healthy forest and the gray-attack disturbance phase; however, it was difficult to use this index for detecting different recovery phases and to distinguish recovery phases from healthy forest. The areas affected by the disturbances had lower values of NDVI and NDMI indices (NDVI quartile range Q2–Q3: 0.63–0.71; NDMI Q2–Q3: 0.10–0.19) and the TCW index had negative values (Q2–Q3: −0.06–−0.05)). The analysis was performed with a cloud-based tool—Sentinel Hub. Cloud-based technologies have brought a new dimension in the processing and analysis of satellite data and allowed satellite data to be brought to end-users in the forestry sector. The Copernicus program and its data from Sentinel missions have evoked new opportunities in the application of satellite data. The usage of Sentinel-2 data in the research of long-term forest vegetation changes has a high relevance and perspective due to the free availability, distribution, and well-designed spectral, temporal, and spatial resolution of the Sentinel-2 data for monitoring forest ecosystems.
This study focused on the evaluation of forest vegetation changes from 1992 to 2015 in the Low Tatras National Park (NAPANT) in Slovakia and the Sumava National Park in Czechia using a time series (TS) of Landsat images. The study area was damaged by wind and bark beetle calamities, which strongly influenced the health state of the forest vegetation at the end of the 20th and beginning of the 21st century. The analysis of the time series was based on the ten selected vegetation indices in different types of localities selected according to the type of forest disturbances. The Landsat data CDR (Climate Data Record/Level 2) was normalized using the PIF (Pseudo-Invariant Features) method and the results of the Time Series were validated by in-situ data. The results confirmed the high relevance of the vegetation indices based on the SWIR bands (e.g., NDMI) for the purpose of evaluating the individual stages of the disturbance (especially the bark beetle calamity). Usage of the normalized Landsat data Climate Data Record (CDR/Level 2) in the research of long-term forest vegetation changes has a high relevance and perspective due to the free availability of the corrected data.
This study is focused on the evaluation of forest vegetation changes that took place between 1992 and 2015 in the Low Tatras National Park in Slovakia, using time series on Landsat 4, 5, 7, and 8 data. Time-series analysis was performed by evaluating the development of six vegetation indices in nine different localities selected based on the type of damage. The CDR (Climate Data Records) of the Landsat data was first normalized using the PIF method, and the trajectories of the used vegetation indices were compared with in-situ data. The area was damaged by both wind and bark beetles that significantly affected the forest vegetation in the Low Tatras National Park at the beginning of the 21st century. The results confirmed the excellent predictive abilities of vegetation indices based on SWIR bands (e.g. NDMI) for the purpose of evaluating the individual stages of a disaster. The use of the Landsat data CDR in the research of long-term forest vegetation changes is of high relevance and perspective owing to the free availability and distribution of the corrected data. Finally, several applications of remote sensing data are proposed for the management and the protection of national parks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.