GABA
A
receptors are pentameric ligand-gated ion channels involved in fast inhibitory neurotransmission and are allosterically modulated by the anxiolytic, anticonvulsant, and sedative-hypnotic benzodiazepines. Here we show that the prokaryotic homolog ELIC also is activated by GABA and is modulated by benzodiazepines with effects comparable to those at GABA
A
receptors. Crystal structures reveal important features of GABA recognition and indicate that benzodiazepines, depending on their concentration, occupy two possible sites in ELIC. An intrasubunit site is adjacent to the GABA-recognition site but faces the channel vestibule. A second intersubunit site partially overlaps with the GABA site and likely corresponds to a low-affinity benzodiazepine-binding site in GABA
A
receptors that mediates inhibitory effects of the benzodiazepine flurazepam. Our study offers a structural view how GABA and benzodiazepines are recognized at a GABA-activated ion channel.
Structural basis of ligand recognition in 5-HT3 receptorsThe crystal structures of a binding protein engineered to recognize serotonin (5-HT) and the anti-emetic granisetron with affinities comparable to the 5-HT3 receptor reveal important structural details of ligand recognition in the 5-HT3 receptor.
Background: Pentameric ligand-gated ion channels are modulated by general anesthetics.Results: The crystal structure of ELIC in complex with bromoform reveals anesthetic binding in the channel pore and in novel sites in the transmembrane and extracellular domain.Conclusion: General anesthetics allosterically modulate channel function via multisite binding.Significance: Our data reveal detailed insight into multisite recognition of general anesthetics at the structural level.
SignificanceIn this study we take advantage of a recently described chimera of the α7 nicotinic acetylcholine receptor (nAChR) and acetylcholine binding protein (AChBP), termed α7-AChBP. To date, more than 70 crystal structures have been determined for AChBP in complex with ligands that occupy the orthosteric binding site. Here, we use an innovative screening strategy to discover molecular fragments that occupy allosteric binding sites. In combination with X-ray crystallography we determine a molecular blueprint of three different allosteric sites in α7-AChBP. Using electrophysiological recordings on the human α7 nAChR we demonstrate that each of the three sites is involved in allosteric modulation of the receptor. Our study contributes to understanding the sites of allosteric binding in ion channels.
Partial agonists of the α4β2 nicotinic acetylcholine receptor (nAChR), such as varenicline, are therapeutically used in smoking cessation treatment. These drugs derive their therapeutic effect from fundamental molecular actions, which are to desensitize α4β2 nAChRs and induce channel opening with higher affinity, but lower efficacy than a full agonist at equal receptor occupancy. Here, we report X-ray crystal structures of a unique acetylcholine binding protein (AChBP) from the annelid Capitella teleta, CtAChBP, in complex with varenicline or lobeline, which are both partial agonists. These structures highlight the architecture for molecular recognition of these ligands, indicating the contact residues that potentially mediate their molecular actions in α4β2 nAChRs. We then used structure-guided mutagenesis and electrophysiological recordings to pinpoint crucial interactions of varenicline with residues on the complementary face of the binding site in α4β2 nAChRs. We observe that residues in loops D and E are molecular determinants of desensitization and channel opening with limited efficacy by the partial agonist varenicline. Together, this study analyzes molecular recognition of smoking cessation drugs by nAChRs in a structural context. addiction | cys-loop receptor | ligand-gated ion channel
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.