Developing Artificial Intelligence is a labor intensive task. It implies both storage and computational resources. In this paper, we present a state-of-the-art service based infrastructure for deploying, managing and serving computational models alongside their respective data-sets and virtual environments. Our architecture uses key-based values to store specific graphs and datasets into memory for fast deployment and model training, furthermore leveraging the need for manual data reduction in the drafting and retraining stages. To develop the platform, we used clustering and orchestration to set up services and containers that allow deployment within seconds. In this article, we cover high performance computing concepts such as swarming, GPU resource management for model implementation in production environments with emphasis on standardized development to reduce integration tasks and performance optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.