Learning and memory require structural and functional modifications of synaptic connections, and synaptic deficits are believed to underlie many brain disorders. The LIM-domain-containing protein kinases (LIMK1 and LIMK2) are key regulators of the actin cytoskeleton by affecting the actin-binding protein, cofilin. In addition, LIMK1 is implicated in the regulation of gene expression by interacting with the cAMP-response element-binding protein. Accumulating evidence indicates that LIMKs are critically involved in brain function and dysfunction. In this paper, we will review studies on the roles and underlying mechanisms of LIMKs in the regulation of long-term potentiation (LTP) and depression (LTD), the most extensively studied forms of long-lasting synaptic plasticity widely regarded as cellular mechanisms underlying learning and memory. We will also discuss the involvement of LIMKs in the regulation of the dendritic spine, the structural basis of synaptic plasticity, and memory formation. Finally, we will discuss recent progress on investigations of LIMKs in neurological and mental disorders, including Alzheimer’s, Parkinson’s, Williams–Beuren syndrome, schizophrenia, and autism spectrum disorders.
α-Thalassemia X-linked intellectual disability (ATR-X) syndrome is a neurodevelopmental disorder caused by mutations in the ATRX gene that encodes a SNF2-type chromatinremodeling protein. The ATRX protein regulates chromatin structure and gene expression in the developing mouse brain and early inactivation leads to DNA replication stress, extensive cell death, and microcephaly. However, the outcome of Atrx loss of function postnatally in neurons is less well understood. We recently reported that conditional inactivation of Atrx in postnatal forebrain excitatory neurons (ATRX-cKO) causes deficits in long-term hippocampus-dependent spatial memory. Thus, we hypothesized that ATRX-cKO mice will display impaired hippocampal synaptic transmission and plasticity.In the present study, evoked field potentials and current source density analysis were recorded from a multichannel electrode in male, urethane-anesthetized mice. Three major excitatory synapses, the Schaffer collaterals to basal dendrites and proximal apical dendrites, and the temporoammonic path to distal apical dendrites on hippocampal CA1 pyramidal cells were assessed by their baseline synaptic transmission, including pairedpulse facilitation (PPF) at 50-ms interpulse interval, and by their long-term potentiation (LTP) induced by theta-frequency burst stimulation. Baseline single-pulse excitatory response at each synapse did not differ between ATRX-cKO and control mice, but baseline PPF was reduced at the CA1 basal dendritic synapse in ATRX-cKO mice. While basal dendritic LTP of the first-pulse excitatory response was not affected in ATRX-cKO mice, proximal and distal apical dendritic LTP were marginally and significantly reduced, respectively. These results suggest that ATRX is required in excitatory neurons of the forebrain to achieve normal hippocampal LTP and PPF at the CA1 apical and basal dendritic synapses, respectively. Such alterations in hippocampal synaptic transmission and plasticity could explain the long-term spatial memory deficits in ATRX-cKO mice and provide insight into the physiological mechanisms underlying intellectual disability in ATR-X syndrome patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.