This paper presents the outcomes of an experimental and numerical study performed on epoxy-bonded single lap joints (SLJs) between carbon fiber-reinforced polymer (CFRP) composite strips and steel elements. For the experimental program, 34 specimens were prepared by varying the type of the composite strip and the type of adhesives and their thicknesses; all specimens were loaded in axial tension up to failure. The specific failure mechanisms were identified and commented on the basis of the performed tests, and the load–displacement curves were plotted. Additionally, the strain distributions along the bond lengths at different load stages, the shear stress–displacements (slip) variations and the stress–strain distributions for the CFRP strips were plotted and investigated. The numerical simulations, based on 3D finite element method (FEM) analysis, provided consistent results, in good agreement with the experimental ones for all parameters that were investigated and discussed in this paper.
The greatest advantage of fiber-reinforced composite materials is the freedom to tailor their strength and stiffness properties, while the most significant disadvantage consists in their high costs. Therefore, the design process and especially the optimization phase becomes an important step. The geometry of the fabric of each lamina as well as their stacking sequence need to be carefully defined, starting from some basic geometric variables. The input parameters are the widths and the heights of the tows, the laminate-stacking sequence and the gaps between two successive tows or the height of the neat matrix. This paper is a follow-up to a previous work on using and improving an in-house software called SOMGA (Satin Optimization with a Modified Genetic Algorithm), aimed to optimize the geometrical parameters of satin-reinforced multi-layer composites. The final goal is to find out the way in which various types of woven fabrics can affect the best possible solution to the problem of designing a composite material, able to withstand a given set of in-plane loads. The efficiency of the composite structure is evaluated by its ultimate strains using a fitness function that analyses and compares the mechanical behavior of different fabric-reinforced composites. Therefore, the ultimate strains corresponding to each configuration are considered intermediate data, being analyzed comparatively until obtaining the optimal values. When the software is running, for each analysis step, a set of intermediate values is provided. However, the users do not have to store these values, because the final result of the optimization directly provides the composite configuration with maximum efficiency, whose structural response meets the initially imposed loading conditions. To illustrate how the SOMGA software works, six different satin-woven-fabric-reinforced composites, starting from plain weave (satin 2/1/1), then satin 3/1/1, satin 4/1/1, satin 5/1/1, satin 5/2/1 and finally satin 5/3/1, were evaluated in the SOMGA interface. The results were rated against each other in terms of the composite efficiency and the case characterized by minimal reinforcement undulation (thinnest laminate) were highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.