Background Glioblastoma is the commonest malignant brain tumour. Sarcopenia is associated with worse cancer survival, but manually quantifying muscle on imaging is time-consuming. We present a deep learning-based system for quantification of temporalis muscle, a surrogate for skeletal muscle mass, and assess its prognostic value in glioblastoma. Methods A neural network for temporalis segmentation was trained with 366 MRI head images from 132 patients from 4 different glioblastoma data sets and used to quantify muscle cross-sectional area (CSA). Association between temporalis CSA and survival was determined in 96 glioblastoma patients from internal and external data sets. Results The model achieved high segmentation accuracy (Dice coefficient 0.893). Median age was 55 and 58 years and 75.6 and 64.7% were males in the in-house and TCGA-GBM data sets, respectively. CSA was an independently significant predictor for survival in both the in-house and TCGA-GBM data sets (HR 0.464, 95% CI 0.218–0.988, p = 0.046; HR 0.466, 95% CI 0.235–0.925, p = 0.029, respectively). Conclusions Temporalis CSA is a prognostic marker in patients with glioblastoma, rapidly and accurately assessable with deep learning. We are the first to show that a head/neck muscle-derived sarcopenia metric generated using deep learning is associated with oncological outcomes and one of the first to show deep learning-based muscle quantification has prognostic value in cancer.
Aims Glioblastoma multiforme (GBM) is an aggressive brain malignancy. Performance status is an important prognostic factor but is subjectively evaluated, resulting in inaccuracy. Objective markers of frailty/physical condition, such as measures of skeletal muscle mass can be evaluated on cross-sectional imaging and is associated with cancer survival. In GBM, temporalis muscle has been identified as a skeletal muscle mass surrogate and a prognostic factor. However, current manual muscle quantification is time consuming, limiting clinical adoption. We previously developed a deep learning system for automated temporalis muscle quantification, with high accuracy (Dice coefficient 0.912), and showed muscle cross-sectional area is independently significantly associated with survival in GBM (HR 0.380). However, it required manual selection of the temporalis muscle-containing MRI slice. Thus, in this work we aimed to develop a fully automatic deep-learning system, using the eyeball as an anatomic landmark for automatic slice selection, to quantify temporalis and validate on independent datasets. Method 3D brain MRI scans were obtained from four datasets: our in-house glioblastoma patient dataset, TCGA-GBM, IVY-GAP and REMBRANDT. Manual eyeball and temporalis segmentations were performed on 2D MRI images by two experienced readers. Two neural networks (2D U-Nets) were trained, one to automatically segment the eyeball and the other to segment the temporalis muscle on 2D MRI images using Dice loss function. The cross sectional area of eyeball segmentations were quantified and thresholded, to select the superior orbital MRI slice from each scan. This slice underwent temporalis segmentation, whose cross sectional area was then quantified. Accuracy of automatically predicted eyeball and temporalis segmentations were compared to manual ground truth segmentations on metrics of Dice coefficient, precision, recall and Hausdorff distance. Accuracy of MRI slice selection (by the eyeball segmentation model) for temporalis segmentation was determined by comparing automatically selected slices to slices selected manually by a trained neuro-oncologist. Results 398 images from 185 patients and 366 images from 145 patients were used for the eyeball and temporalis segmentation models, respectively. 61 independent TCGA-GBM scans formed a validation cohort to assess the performance of the full pipeline. The model achieved high accuracy in eyeball segmentation, with test set Dice coefficient of 0.9029 ± 0.0894, precision of 0.8842 ± 0.0992, recall of 0.9297 ± 0.6020 and Hausdorff distance of 2.8847 ± 0.6020. High segmentation accuracy was also achieved by the temporalis segmentation model, with Dice coefficient of 0.8968 ± 0.0375, precision of 0.8877 ± 0.0679, recall of 0.9118 ± 0.0505 and Hausdorff distance of 1.8232 ± 0.3263 in the test set. 96.1% of automatically selected slices for temporalis segmentation were within 2 slices of the manually selected slice. Conclusion Temporalis muscle cross-sectional area can be rapidly and accurately assessed from 3D MRI brain scans using a deep learning-based system in a fully automated pipeline. Combined with our and others’ previous results that demonstrate the prognostic significance of temporalis cross-sectional area and muscle width, our findings suggest a role for deep learning in muscle mass and sarcopenia screening in GBM, with the potential to add significant value to routine imaging. Possible clinical applications include risk profiling, treatment stratification and informing interventions for muscle preservation. Further work will be to validate the prognostic value of temporalis muscle cross sectional area measurements generated by our fully automatic deep learning system in the multiple in-house and external datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.