The CRISPR-Cas9 system has raised hopes for developing personalized gene therapies for complex diseases. Its application for genetic and epigenetic therapies in humans raises concerns over immunogenicity of the bacterially derived Cas9 protein. Here we detect antibodies to Streptococcus pyogenes Cas9 (SpCas9) in at least 5% of 143 healthy individuals. We also report pre-existing human CD8+T cell immunity in the majority of healthy individuals screened. We identify two immunodominant SpCas9 T cell epitopes for HLA-A*02:01 using an enhanced prediction algorithm that incorporates T cell receptor contact residue hydrophobicity and HLA binding and evaluated them by T cell assays using healthy donor PBMCs. In a proof-of-principle study, we demonstrate that Cas9 protein can be modified to eliminate immunodominant epitopes through targeted mutation while preserving its function and specificity. Our study highlights the problem of pre-existing immunity against CRISPR-associated nucleases and offers a potential solution to mitigate the T cell immune response.
Over 600 000 cancers each year are attributed to the human papillomavirus (HPV), including cervical, anogenital and oropharyngeal cancers (OPC). A key challenge in understanding HPV immunobiology is the diversity of oncogenic HPV types and the need for multiplexed display of HPV antigens to measure antibody responses. We have generated custom HPV protein microarrays displaying 98 proteins as C-terminal GST fusion proteins, representing eight antigens of two low-risk HPV types (HPV6 and 11) and ten oncogenic high-risk HPV types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52 and 58). We demonstrate robust and reproducible protein expression of 96/98 of the antigens using a human cell lysate expression system. The target epitopes and specificities of four monoclonal antibodies were identified. Using sera from ten patients with newly diagnosed OPC and ten controls, we demonstrate specific IgG seroreactivity to HPV16 E1, E2, and E7 (a fold increase of 1.52, 2.19 and 1.35 in cases vs. controls, respectively, all p < 0.005), confirming our prior data on an ELISA platform. We also detect HPV52 E7 Abs in serum from a patient with cervical cancer. The HPV protein array has potential for rapid identification of serologic responses to 12 HPV types.
BackgroundSchistosoma mansoni infection represents a major cause of morbidity and mortality in many areas of the developing world. Effective vaccines against schistosomiasis are not available and disease management relies mainly on treatment with the anthelmintic drug praziquantel. Several promising schistosomal antigens have been evaluated for vaccine efficacy such as Sm14, Sm29 and tetraspanins. However, most investigators examine these promising antigens in animal models individually rather than in properly adjuvanted antigen combinations.MethodsIn the present study, we made a recombinant fusion protein comprised of the promising schistosomal antigens Sm14 and Sm29. The fusion protein, FSm14/29, was administered to Swiss albino mice either unadjuvanted or adjuvanted with polyinosinic-polycytidylic acid adjuvant, poly(I:C). Mice were challenged with S. mansoni cercariae and different parasitological/immunological parameters were assessed seven weeks post-challenge. Data were analyzed using the ANOVA test with post-hoc Tukey-Kramer test.ResultsMice pre-immunized with unadjuvanted or poly(I:C)-adjuvanted fusion protein showed reduction of adult worm burden of 44.7 and 48.4%, respectively. In addition, significant reduction of tissue egg burdens was observed in mice immunized with the fusion protein when compared with the infected saline/adjuvant negative control groups and groups immunized with the individual Sm14 and Sm29 antigens. Light microscope and scanning electron microscope (SEM) investigation of adult worms recovered from FSm14/29-immunized mice revealed appreciable morphological damage and tegumental deformities. Histopathological examination of liver sections of immunized mice demonstrated reduced granulomatous and inflammatory reactions when compared with infected unvaccinated mice or mice immunized with the individual Sm14 and Sm29 antigens.ConclusionThe findings presented in this study highlight the importance of the fusion protein FSm14/29 as a potential vaccine candidate that is worthy of further investigation.
The application of Cas9 for genetic and epigenetic therapies in humans raises concerns over immunogenicity of this foreign protein. We report pre-existing human CD8+ T cell immunity to Streptococcus pyogenes Cas9 in the majority of healthy individuals screened. In a proof-ofprinciple study, we demonstrate that Cas9 protein can be modified to eliminate immunodominant epitopes through targeted mutation while preserving its function and specificity.Of the Cas9 orthologs derived from bacterial species, the SpCas9 is the best characterized. S. pyogenes is a ubiquitous pathogen, with an annual incidence of 700 million worldwide 26 , but immunity to SpCas9 in humans has not been reported. Here, we sought to characterize the pre-existing immune response to SpCas9 in healthy individuals and to identify the immunodominant T cell epitopes with the aim of developing SpCas9 proteins that have diminished capacity to invoke human adaptive response.CRISPR application for human therapies will span its use both for gene editing (through DNA double-strand breaks) or epigenetic therapies (without DNA double-strand breaks). In fact, recent reports shed light on CRISPR's ability to activate or repress gene expression in mice [27][28][29] , which opens the door to a variety of new therapeutic applications such as activating silent genes, compensating for disrupted genes, cell fate reprogramming, or silencing disrupted genes, without the concern over permanent change in DNA sequence. However, unlike the use of Cas9 for gene editing, which may only require Cas9 presence in cells for a few hours, current techniques for CRISPR-based epigenetic therapies require longer term expression of Cas9 in vivo, possibly for weeks and months 28,29 , which poses the challenge of combating pre-existing immune response towards Cas9. This challenge will need to be addressed before CRISPR application for human therapies, especially for epigenetic therapies, can be fully implemented. Delivery of CRISPR in vivo by incorporating its expression cassette in adeno-associated virus (AAV), will most likely shape many of the initial clinical trials as AAV-based gene delivery is one of the safest and most prevalent forms of gene therapies in human. AAV will enable longer term expression of Cas9, desirable for epigenetic therapies. Therefore, unlike Cas9 delivery in the form of ribonucleoprotein complexes (which are short term), it is highly likely that CRISPR delivery through AAV and its expression within target cells will engage CD8+ T cell immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.