No abstract
Measurements of standardized uptake values (SUV) can vary due to many causes, including respiratory motion. Various methodologies have been introduced to correct for motion in PET, with quiescent-period-gated (QPG) PET being the most popular approach. QPG has been shown to improve PET image quantification compared to static-whole-body (SWB) PET. However, to achieve this improvement, QPG PET requires CT attenuation correction data that matches the QPG PET data. In this paper we investigated the effect of using free-breathing CT for attenuation correction of QPG PET on SUVmax and SUVpeak and compared the results to those of SWB PET. 34 lesions in 27 patients were included. All patients were injected with F-18 FDG. 4D-CT datasets representing all possible phases of respiration that could result from a free-breathing CT were acquired. The 4D-CT datasets were used for attenuation correction of the QPG and SWB PET data. Percentage change in the SUVmax and SUVpeak range was calculated for the reconstructions and compared between QPG and SWB PET. The mean percentage change in the lesion SUVmax and SUVpeak ranges were 19.1% (p = 0.0178) and 25.2% (p = 0.0002) higher for QPG compared to SWB, respectively. The maximum percent change in SUVmax and SUVpeak ranges were 58.5% and 59.0% for QPG, respectively compared to 46.1% and 45.3% for SWB, respectively. The highest SUVmax and SUVpeak measurements corresponded to the CT phase that matched the QPG phase. Utilizing free-breathing CT for attenuation correction can lead to large changes in quantification due to misalignment with PET data. This misalignment has a large quantitative impact on QPG PET as compared to SWB PET. When interpreting quantitative changes in lesions, it is critical to consider the influences of free-breathing CT-based attenuation correction.
Continuous bed motion (CBM) was recently introduced as an alternative to step-andshoot (SS) mode for PET/CT data acquisition. In CBM, the patient is continuously advanced into the scanner at a preset speed, whereas in SS, the patient is imaged in overlapping bed positions. Previous investigations have shown that patients preferred CBM over SS for PET data acquisition. In this study, we investigated the effect of CBM versus SS on patient breathing and respiratory motion correction. One hundred patients referred for PET/CT were scanned using a Siemens mCT scanner. Patient respiratory waveforms were recorded using an Anzai system and analyzed using four methods:Methods 1 and 2 measured the coefficient of variation (COV) of the respiratory cycle duration (RCD) and amplitude (RCA). Method 3 measured the respiratory frequency signal prominence (RSP) and method 4 measured the width of the HDChest optimal gate (OG) window when using a 35% duty cycle. Waveform analysis was performed over the abdominothoracic region which exhibited the greatest respiratory motion and the results were compared between CBM and SS. Respiratory motion correction was assessed by comparing the ratios of SUVmax, SUVpeak, and CNR of focal FDG uptake, as well asRadiologists' visual assessment of corresponding image quality of motion corrected and uncorrected images for both acquisition modes. The respiratory waveforms analysis showed that the RCD and RCA COV were 3.7% and 33.3% lower for CBM compared to SS, respectively, while the RSP and OG were 30.5% and 2.0% higher, respectively. Image analysis on the other hand showed that SUVmax, SUVpeak, and CNR were 8.5%, 4.5%, and 3.4% higher for SS compared to CBM, respectively, while the Radiologists' visual comparison showed similar image quality between acquisition modes. However, none of the results showed statistically significant differences between SS and CBM, suggesting that motion correction is not impacted by acquisition mode. K E Y W O R D S continuous bed motion, lesion detectability, patient breathing repeatability, PET/CT, respiratory motion correction, SUV quantification ---
Purpose To compare the diagnostic performance of 3.0 T and 1.5 T MRI in the staging of prostate cancer. Material and methods English-language studies on the diagnostic accuracy of 3.0 T and 1.5 T MRI in prostate cancer staging published through May 2020 were searched for in relevant databases. The focus was on studies in which both 3.0 T and 1.5 T MRI were performed in the study population, to reduce interstudy heterogeneity. Pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the receiver operating characteristic curve were determined for 3.0 T and for 1.5 T along with 95% confidence intervals (CIs). Results Out of 8 studies identified, 4 met the inclusion criteria. 3.0 T ( n = 160) had a pooled sensitivity of 69.5% (95% CI: 56.4-80.1%) and a pooled specificity of 48.8% (95% CI: 6.0-93.4%), while 1.5 T ( n = 139) had a pooled sensitivity of 70.6% (95% CI: 55.0-82.5%; p = 0.91) and a pooled specificity of 41.7% (95% CI: 6.2-88.6%; p = 0.88). The pooled DOR for 3.0 T was 3 (95% CI: 0-26.0%), while the pooled DOR for 1.5 T was 2 (95% CI: 0-18.0%), which was not a significant difference ( p = 0.89). Conclusions 3.0 T has slightly better diagnostic performance than 1.5 T MRI in prostate cancer staging (3 vs. 2), although without statistical significance. Our findings suggest the need for larger, randomized trials directly comparing 3.0 T and 1.5 T MRI in prostate cancer.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.