During mucosal injury, intestinal immune cells play a crucial role in eliminating invading bacteria. However, as the excessive accumulation of immune cells promotes inflammation and delays tissue repair, it is essential to identify the mechanism that limits the infiltration of immune cells to the mucosal-luminal interface. Cholesterol sulfate (CS) is the lipid product of the sulfotransferase SULT2B1 and suppresses immune reactions by inhibiting DOCK2-mediated Rac activation. In this study, we aimed to elucidate the physiological role of CS in the intestinal tract. We found that, in the small intestine and colon, CS is predominantly produced in the epithelial cells close to the lumen. While dextran sodium sulfate (DSS)-induced colitis was exacerbated in Sult2b1-deficient mice with increased prevalence of neutrophils, the elimination of either neutrophils or intestinal bacteria in Sult2b1-deficient mice attenuated disease development. Similar results were obtained when the Dock2 was genetically deleted in Sult2b1-deficient mice. In addition, we also show that indomethacin-induced ulcer formation in the small intestine was exacerbated in Sult2b1-deficient mice and was ameliorated by CS administration. Thus, our results uncover that CS acts on inflammatory neutrophils, and prevents excessive gut inflammation by inhibiting the Rac activator DOCK2. The administration of CS may be a novel therapeutic strategy for inflammatory bowel disease and non-steroidal anti-inflammatory drug-induced ulcers.
The lack of biomarkers to monitor and predict the efficacy of electroconvulsive therapy (ECT) has hindered its optimal use. To establish metabolomic markers for monitoring and predicting the treatment efficacy of ECT, we comprehensively evaluated metabolite levels in patients with major depressive disorder (MDD) by performing targeted and non-targeted metabolomic analyses using plasma samples before and after the first, third, and final ECT sessions, and 3–7 days after the final session. We compared the plasma metabolomes of age- and sex-matched healthy controls (HCs). Thirteen hospitalized patients with MDD and their corresponding HCs were included in this study. We observed that patients with MDD exhibited lower levels of amino acids, including gamma-aminobutyric acid (GABA), and metabolites involved in tryptophan metabolism and the kynurenine pathway, and higher levels of cortisol at baseline. Furthermore, we investigated the relationship between metabolite levels and depression severity across seven measurement timepoints along with one correlation analysis and found that amino acids, including GABA and tryptophan catabolites, were significantly correlated with the severity of depression. Despite the exploratory nature of this study due to the limited sample size necessitating further validation, our findings suggest that the blood metabolic profile has potential as a biomarker for ECT.
Effective early-stage markers for predicting which patients are at risk of developing SARS-CoV-2 infection have not been fully investigated. Here, through comprehensive serum metabolome analysis, we identified that the acceleration of amino acid catabolism within 5 d from disease onset correlated with future disease severity. Increased levels of de-aminated amino acids catabolites involved in the de novo nucleotide synthesis pathway were identified as early prognostic markers that correlated with the initial viral load. We demonstrated in mice models of SARS-CoV2-MA10 and influenza infection that such de-amination of amino acids and de novo synthesis of nucleotides were associated with the abnormal proliferation of airway and vascular tissue cells in the lungs during the early stages of infection. Consequently, lung parenchymal tissue remodeling in the early stages of respiratory viral infections induces systemic metabolic remodeling, and the amino acid catabolites are valid predictors for excessive inflammatory response at later disease stages.
Microbiota consisting of various fungi and bacteria have a significant impact on the physiological functions of the host. However, it is unclear which species are essential to this impact and how they affect the host. This study analyzed and isolated microbes from natural food sources ofDrosophilalarvae, and investigated their functions.Hanseniaspora uvarumis the predominant yeast responsible for larval growth in the earlier stage of fermentation. As fermentation progresses,Acetobacter orientalisemerges as the key bacterium responsible for larval growth, although yeasts and lactic acid bacteria must coexist along with the bacterium to stabilize this host-bacterial association. By providing nutrients to the larvae in an accessible form, the microbiota contributes to the upregulation of various genes that function in larval cell growth and metabolism. Thus, this study elucidates the core microbial species that support animal growth under microbial transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.