DBSCAN is a base algorithm for density-based clustering. It can find out the clusters of different shapes and sizes from a large amount of data, which is containing noise and outliers. However, it is fail to handle the local density variation that exists within the cluster. Thus, a good clustering method should allow a significant density variation within the cluster because, if we go for homogeneous clustering, a large number of smaller unimportant clusters may be generated. In this paper, an enhancement of DBSCAN algorithm is proposed, which detects the clusters of different shapes and sizes that differ in local density. Our proposed method VMDBSCAN first finds out the "core" of each cluster-clusters generated after applying DBSCAN. Then, it "vibrates" points toward the cluster that has the maximum influence on these points. Therefore, our proposed method can find the correct number of clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.