A rare complication of cervical spine decompression is acute paralysis following the procedure. This neurologic deficit is thought to be due to reperfusion injury of a chronically ischemic spinal cord and is referred to as "white cord syndrome" given the pathognomonic finding of hyperintensity on T2-weighted MRI. Three prior cases have been reported. We present a case of transient quadriplegia following posterior cervical decompression.A 41-year-old male with cervical spondylotic myelopathy presented with bilateral progressive upper extremity weakness, hyperreflexia, and cervical spine MRI showing severe cord compression at C1 and partial hyperintense signal. Intraoperatively, after C1 bony decompression and without perceptible technical cause, the patient experienced a complete loss of both somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) with an eventual return to baseline prior to completing the operation.The patient awoke from surgery with acute quadriplegia without perceptible technical cause (intraoperative compression or evident anatomic compromise). An immediate postoperative MRI revealed a more pronounced hyperintensity in the central cervical cord on T2-weighted sequences. Treatment with increased mean arterial pressure (MAP) therapy and dexamethasone resulted in the patient regaining some movement over a period of hours and full strength over a period of months.The mechanism of acute weakness following cervical spine decompression in the absence of perceptible technical cause is not fully understood, but current theory suggests that a reperfusion injury is most likely the cause. It remains a diagnosis of exclusion. Familiarity with this potential postoperative complication can aid in appropriate postoperative therapy with early diagnosis and intervention leading to restored spinal cord function and excellent prognosis.
A systematic PubMed and Google Scholar search for studies related to the anatomy, history, surgical approaches, complications, and diseases of the superior sagittal sinus was performed. The purpose of this review is to elucidate some of the more recent advances of our understanding of this structure. One of the earliest anatomical landmarks to be described, the superior sagittal sinus (SSS, sinus sagittalis superior (Latin); "sagittalis" Latin for 'arrow' and "sinus" Latin for 'recess, bend, or bay') has been defined and redefined by the likes of Vesalius and Cushing. A review of the various methods of approaching pathology of the SSS is discussed, as well as the historical discovery of these methods. Disease states that were emphasized include invasion of the SSS by meningioma, as well as thrombosis and vascular malformations.
Intracranial germ cell tumors are uncommon and account for only 0.3–3.4% of all intracranial tumors. Teratomas are a subset of these neoplasms, and their finding in brain structures is exceptionally rare, and occurrence within the skull base is quite novel. The authors report the case of a 57-year-old male patient who presented with vision changes, incontinence, ataxia, and altered mental status of 1 week's duration. Imaging revealed a large intrasellar mass with suprasellar extension, involvement of the ventricular system, and marked hydrocephalus with the enlargement of the lateral and third ventricles. The patient underwent a pterional craniotomy/transsylvian approach for resection of the mass. Postoperative histological examination of the resected mass was confirmatory for a mature cystic teratoma. This was followed by radiotherapy, stereotactic radiosurgery, and adjuvant radiotherapy. At the most recent followup, approximately 4 years later, the patient is doing well with improved vision since the operation. This report highlights our experience with a teratoma in a very unusual location, and we review the relevant literature.
Background: Measurement of optic nerve sheath diameter (ONSD) using ocular ultrasonography has shown a promise in predicting increased intracranial pressure (ICP). However, this method is dependent on operator technique and equipment availability. We propose an alternative method of measuring ONSD and Marshall score grading by utilizing initial computed tomography (CT) head obtained on admission. We believe that such a technique could help predict patients requiring an invasive ICP monitor on admission. Methods: Patients were retrospectively selected from the neurosurgery database of a level II trauma center. Control patients originated from a database of nontraumatic brain injury (TBI) patients with a negative CT head and no intracranial pathology. Study subjects included patients aged 18–90 years, who sustained a severe TBI requiring placement of an ICP monitor on admission. All patients had a non-contrast CT head before the placement of an ICP monitor. Patients receiving any intervention for decreasing suspected elevated ICPs and those with any documented orbital fractures before ICP monitor placement were excluded from the study. All measurements were performed by at least of two independent assessors. Results: A total of 242 patients were reviewed, of which 204 (100 control and 104 intervention) met inclusion criteria for this study. T he average age in the control group was 49.1 ± 22.9 years old while the average age of the intervention group was 36.9 ± 15.1 years (P < 0.0001). The average Glasgow Coma Scale was 7 in the intervention group. The average ONSD of the control group was 5.73 ± 0.58 mm compared to 6.76 ± 0.83 mm in the intervention group (P < 0.0001). Linear regression analysis demonstrated a statistically significant correlation between ONSD and opening ICP (r = 0.40, P < 0.001) and peak ICP (r = 0.31, P < 0.0001). An ONSD 6.0 mm + Marshall score 3 on initial CT head demonstrated a 92.5% sensitivity, 92.6% specificity, and 96.1% positive predictive value for developing an ICP 20 mmHg during hospitalization. Conclusion: Utilizing ONSD in combination with Marshall score grading on initial CT head is a strong predictor of elevated ICP. These criteria can be used in future studies to develop more objective criteria to guide ICP monitor placement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.