Silk fibroin (SF), a natural polymer produced by Bombyx mori silkworms, has been extensively explored to prepare porous scaffolds for tissue engineering applications. Here, we demonstrate, a scaffold made of SF, which exhibits compression modulus comparable to natural cancellous bone while retaining the appropriate porosities and interconnected pore architecture. The scaffolds also exhibit high resistance to in-vitro proteolytic degradation due to the dominant beta sheet conformation of the SF protein. Additionally, the scaffolds are prepared using a simple method of microparticle aggregation. We also demonstrate, for the first time, a method to prepare SF micro-particles using a Hexafluoroisopropanol-Methanol solvent-coagulant combination. SF microparticles obtained using this method are monodisperse, spherical, non-porous and extremely crystalline. These micro-particles have been further aggregated together to form a 3D scaffold. The aggregation is achieved by random packing of these microparticles and fusing them together using a dilute SF solution. Preliminary in-vitro cell culture and in-vivo implantation studies demonstrate that the scaffolds are biocompatible and they exhibit the appropriate early markers, making them promising candidates for bone regeneration.
Synthetic bone void fillers based on calcium ceramics are used to fill cavities in the bone and promote bone regeneration. More recently, silk fibroin (SF), a protein polymer obtained from Bombyx mori silkworm, has emerged as a promising material in bone void filling. In this work, we have compared the safety and efficacy of two types of silk fibroin-based bone void fillers with currently used and commercially available ceramic bone void fillers (based on calcium sulphate, beta tricalcium phosphate, and beta tricalcium phosphate with hydroxyapatite). Further, we have also evaluated these two types of SF scaffolds, which have strikingly different structural attributes.The biocompatibility of these scaffolds was comparable as assessed by cytotoxicity assay, cellular adhesion assay, and immunogenic assay. Ability of the scaffolds to support differentiation of human mesenchymal stem cells (hMSCs) into an osteoblastic lineage was also evaluated in an in vitro differentiation experiment using reverse transcriptase polymerase chain reaction analysis. These results revealed that cells cultured on SF scaffolds exhibit higher expression of early to late markers such as Runx2, BMPs, collagen, osterix, osteopontin, and osteocalcin as compared with ceramic-based scaffolds. This observation was further validated by studying the expression of alkaline phosphatase and calcium deposition. We also show that scaffolds made from same material of SF, but characterized by very different pore architectures, have diverse outcome in stem cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.