Waste-to-energy processes remain essential to ensure the safe and irreversible removal of materials and substances that are (or have become) unsuitable for reuse or recycling, and hence, to keep intended cycles of materials in the circular economy clean. In this paper, the behavior of inorganic compounds in waste-to-energy combustion processes are discussed from a multi-disciplinary perspective, against a background of ever tightening emission limits and targets of increasing energy efficiency and materials recovery. This leads to the observation that, due to the typical complexity of thermally treated waste, the intelligence of combustion control systems used in state-of-the-art waste-to-energy plants needs to be expanded to better control the behavior of inorganic compounds that typically end up in waste furnaces. This paper further explains how this goal can be achieved by developing (experimentally validated) predictive numerical models that are engineering-based and/or data-driven. Additionally, the significant economic potential of advanced thermochemical intelligence towards inorganic compounds in waste-to-energy combustion control systems is estimated on the basis of typical operational figures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.