Research in psychology has shown that both motivation and wellbeing are contingent on the satisfaction of certain psychological needs. Yet, despite a long-standing pursuit in human-computer interaction (HCI) for design strategies that foster sustained engagement, behavior change and wellbeing, the basic psychological needs shown to mediate these outcomes are rarely taken into account. This is possibly due to the lack of a clear model to explain these needs in the context of HCI. Herein we introduce such a model: Motivation, Engagement and Thriving in User Experience (METUX). The model provides a framework grounded in psychological research that can allow HCI researchers and practitioners to form actionable insights with respect to how technology designs support or undermine basic psychological needs, thereby increasing motivation and engagement, and ultimately, improving user wellbeing. We propose that in order to address wellbeing, psychological needs must be considered within five different spheres of analysis including: at the point of technology adoption, during interaction with the interface, as a result of engagement with technology-specific tasks, as part of the technology-supported behavior, and as part of an individual's life overall. These five spheres of experience sit within a sixth, society, which encompasses both direct and collateral effects of technology use as well as non-user experiences. We build this model based on existing evidence for basic psychological need satisfaction, including evidence within the context of the workplace, computer games, and health. We extend and hone these ideas to provide practical advice for designers along with real world examples of how to apply the model to design practice.
Ambulance personnel worldwide have a prevalence of PTSD considerably higher than rates seen in the general population, although there is some evidence that rates of PTSD may have decreased over recent decades.
BackgroundMany organisations promote eHealth applications as a feasible, low-cost method of addressing mental ill-health and stress amongst their employees. However, there are good reasons why the efficacy identified in clinical or other samples may not generalize to employees, and many Apps are being developed specifically for this group. The aim of this paper is to conduct the first comprehensive systematic review and meta-analysis evaluating the evidence for the effectiveness and examine the relative efficacy of different types of eHealth interventions for employees.MethodsSystematic searches were conducted for relevant articles published from 1975 until November 17, 2016, of trials of eHealth mental health interventions (App or web-based) focused on the mental health of employees. The quality and bias of all identified studies was assessed. We extracted means and standard deviations from published reports, comparing the difference in effect sizes (Hedge’s g) in standardized mental health outcomes. We meta-analysed these using a random effects model, stratified by length of follow up, intervention type, and whether the intervention was universal (unselected) or targeted to selected groups e.g. “stressed”.Results23 controlled trials of eHealth interventions were identified which overall suggested a small positive effect at both post intervention (g = 0.24, 95% CI 0.13 to 0.35) and follow up (g = 0.23, 95% CI 0.03 to 0.42). There were differential short term effects seen between the intervention types whereby Mindfulness based interventions (g = 0.60, 95% CI 0.34 to 0.85, n = 6) showed larger effects than the Cognitive Behaviour Therapy (CBT) based (g = 0.15, 95% CI 0.02 to 0.29, n = 11) and Stress Management based (g = 0.17, 95%CI -0.01 to 0.34, n = 6) interventions. The Stress Management interventions however differed by whether delivered to universal or targeted groups with a moderately large effect size at both post-intervention (g = 0.64, 95% CI 0.54 to 0.85) and follow-up (g = 0.69, 95% CI 0.06 to 1.33) in targeted groups, but no effect in unselected groups.InterpretationThere is reasonable evidence that eHealth interventions delivered to employees may reduce mental health and stress symptoms post intervention and still have a benefit, although reduced at follow-up. Despite the enthusiasm in the corporate world for such approaches, employers and other organisations should be aware not all such interventions are equal, many lack evidence, and achieving the best outcomes depends upon providing the right type of intervention to the correct population.
Natural language processing (NLP) techniques can be used to make inferences about peoples' mental states from what they write on Facebook, Twitter and other social media. These inferences can then be used to create online pathways to direct people to health information and assistance and also to generate personalized interventions. Regrettably, the computational methods used to collect, process and utilize online writing data, as well as the evaluations of these techniques, are still dispersed in the literature. This paper provides a taxonomy of data sources and techniques that have been used for mental health support and intervention. Specifically, we review how social media and other data sources have been used to detect emotions and identify people who may be in need of psychological assistance; the computational techniques used in labeling and diagnosis; and finally, we discuss ways to generate and personalize mental health interventions. The overarching aim of this scoping review is to highlight areas of research where NLP has been applied in the mental health literature and to help develop a common language that draws together the fields of mental health, human-computer interaction and NLP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.