Biological invasions are a form of global change threatening biodiversity, ecosystem stability, and human health, and cost government agencies billions of dollars in remediation and eradication programs. Attempts to eradicate introduced species are most successful when detection of newly established populations occurs early in the invasion process. We review existing and emerging tools -specifically environmental DNA (eDNA), chemical approaches, remote sensing, citizen science, and agency-based monitoring -for surveillance and monitoring of invasive species. For each tool, we consider the benefits provided, examine challenges and limitations, discuss data sharing and integration, and suggest best practice implementations for the early detection of invasive species. Programs that promote public participation in large-scale biodiversity identification and monitoring (such as iNaturalist and eBird) may be the best resources for early detection. However, data from these platforms must be monitored and used by agencies that can mount appropriate response efforts. Control efforts are more likely to succeed when they are focused on early detection and prevention, thereby saving considerable time and resources.
Temporal trends in insect numbers vary across studies and habitats, but drivers are poorly understood. Suitable long-term data are scant and biased, and interpretations of trends remain controversial. By contrast, there is substantial quantitative evidence for drivers of spatial variation. From observational and experimental studies, we have gained a profound understanding of where insect abundance and diversity is higher—and identified underlying environmental conditions, resource change and disturbances. We thus propose an increased consideration of spatial evidence in studying the causes of insect decline. This is because for most time series available today, the number of sites and thus statistical power strongly exceed the number of years studied. Comparisons across sites allow quantifying insect population risks, impacts of land use, habitat destruction, restoration or management, and stressors such as chemical and light pollution, pesticides, mowing or harvesting, climatic extremes or biological invasions. Notably, drivers may not have to change in intensity to have long-term effects on populations, e.g. annually repeated disturbances or mortality risks such as those arising from agricultural practices. Space-for-time substitution has been controversially debated. However, evidence from well-replicated spatial data can inform on urgent actions required to halt or reverse declines—to be implemented in space.
Insects are declining, but the underlying drivers and differences in responses between species are still largely unclear. Despite the importance of forests, insect trends therein have received little attention. Using 10 years of standardized data (120,996 individuals; 1,805 species) from 140 sites in Germany, we show that declines occurred in most sites and species across trophic groups. In particular, declines (quantified as the correlation between year and the respective community response) were more consistent in sites with many non-native trees or a large amount of timber harvested before the onset of sampling. Correlations at the species level depended on species’ life-history. Larger species, more abundant species, and species of higher trophic level declined most, while herbivores increased. This suggests potential shifts in food webs possibly affecting ecosystem functioning. A targeted management, including promoting more natural tree species composition and partially reduced harvesting, can contribute to mitigating declines.
1. Environmental filters-including those resulting from biotic interactions-play a crucial role during the assembly of ecological communities. The importance of scale has thereby been acknowledged but filters at different scales have rarely been quantified in relation to each other, although these hierarchically nested filters eventually determine which communities assemble from a regional species pool.2. Saproxylic beetles offer an ideal system to study such hierarchically nested environmental filters. Three steps of filtering during the community assembly of these deadwood-dependent beetles are proposed. First, starting from a regional species pool, species must disperse to forest sites. Second, within a site, individuals need to find a patch with preferred microclimatic conditions. Third, the conditions of a single deadwood object (i.e. tree species identity, decomposition stage) at this patch will determine, which species colonise and establish.3. To study these hierarchical filters, we used unique long-term data ets of saproxylic beetle diversity from trap catches at 29 sites and from emergence traps on 694 experimentally installed deadwood logs at the same sites in three regions in Germany. To relate different environmental filters to beetle assemblages, we used a set of 13 functional traits that are hypothesised to relate to different filters at different scales.4. We show that all three hierarchical filtering steps resulted in reductions of functional diversity and simultaneous shifts in the functional composition of beetle assemblages, reflecting the roles of different traits in response to different
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.