Abstract-The inductive learning of fuzzy rule-based classification systems suffers from exponential growth of the fuzzy rule search space when the number of patterns and/or variables becomes high. This growth makes the learning process more difficult and, in most cases, it leads to problems of scalability (in terms of the time and memory consumed) and/or complexity (with respect to the number of rules obtained and the number of variables included in each rule). In this paper, we propose a fuzzy association rulebased classification method for high-dimensional problems, which is based on three stages to obtain an accurate and compact fuzzy rule-based classifier with a low computational cost. This method limits the order of the associations in the association rule extraction and considers the use of subgroup discovery, which is based on an improved weighted relative accuracy measure to preselect the most interesting rules before a genetic postprocessing process for rule selection and parameter tuning. The results that are obtained more than 26 real-world datasets of different sizes and with different numbers of variables demonstrate the effectiveness of the proposed approach.
Abstract-Linguistic fuzzy modeling allows us to deal with the modeling of systems by building a linguistic model which is clearly interpretable by human beings. However, since the accuracy and the interpretability of the obtained model are contradictory properties, the necessity of improving the accuracy of the linguistic model arises when complex systems are modeled. To solve this problem, one of the research lines in recent years has led to the objective of giving more accuracy to linguistic fuzzy modeling without losing the interpretability to a high level.In this paper, a new postprocessing approach is proposed to perform an evolutionary lateral tuning of membership functions, with the main aim of obtaining linguistic models with higher levels of accuracy while maintaining good interpretability.To do so, we consider a new rule representation scheme base on the linguistic 2-tuples representation model which allows the lateral variation of the involved labels. Furthermore, the cooperation of the lateral tuning together with fuzzy rule reduction mechanisms is studied in this paper, presenting results on different real applications. The obtained results show the good performance of the proposed approach in high-dimensional problems and its ability to cooperate with methods to remove unnecessary rules.
In this paper, we propose an index that helps preserve the semantic interpretability of linguistic fuzzy models while a tuning of the membership functions (MFs) is performed. The proposed index is the aggregation of three metrics that preserve the original meanings of the MFs as much as possible while a tuning of their definition parameters is performed. Additionally, rule-selection mechanisms can be used to reduce the model complexity, which involves another important interpretability aspect. To this end, we propose a postprocessing multiobjective evolutionary algorithm that performs rule selection and tuning of fuzzy-rule-based systems with three objectives: accuracy, semantic interpretability maximization, and complexity minimization. We tested our approach on nine realworld regression datasets. In order to analyze the interaction between the fuzzy-rule-selection approach and the tuning approach, these are also individually proved in a multiobjective framework and compared with their respective single-objective counterparts. We compared the different approaches by applying nonparametric statistical tests for pairwise and multiple comparisons, taking into consideration three representative points from the obtained Pareto fronts in the case of the multiobjective-based approaches. Results confirm the effectiveness of our approach, and a wide range of solutions is obtained, which are not only more interpretable but are also more accurate.Index Terms-Fuzzy-rule-based systems (FRBSs), multiobjective evolutionary algorithms (MOEAs), rule selection, semantic interpretability index, tuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.