Brazil is the main producer and exporter and the second-largest consumer of coffee in the world, and Remotely Piloted Aircraft Systems stands out as an efficient remote detection technique applied to the study and mapping of crops. The objective of this study was to characterize three recently planted cultivars of Coffea arabica L. The study area is in Minas Gerais, Brazil, with a coffee plantation of the initial age of 5 months. The temporal behavior was determined based on monthly mean values. The spectral profile was obtained with mean values of the last month of dry and rainy periods. The statistical differences were obtained based on the non-parametric test of multiple comparisons. The estimation of the exponential equation was obtained through the Spearman correlation coefficient of determination and root mean square error. It was concluded that the seasons influence the behavior and development of cultivars, and significant statistical differences were detected for the variables, except for the chlorophyll variable. Due to the proximity and overlap of the reflectance values, spectral bands were not used to individualize cultivars. A correlation between the vegetation indices and leaf area index was observed and the exponential regression equation was estimated for each cultivar under study.
The development of approaches to determine the spatial variability of nitrogen (N) into coffee leaves is essential to increase productivity and reduce production costs and environmental impacts associated with excessive N applications. Thus, this study aimed to assess the potential of the Random Forest (RF) machine learning method applied to vegetation indices (VI) obtained from Remotely Piloted Aircraft (RPA) images to measure the N content in coffee plants. A total of 10 VI were obtained from multispectral images by a camera attached to a rotary-wing RPA. The RGB orthomosaic was used to determine sampling points at the crop area, which were ranked by N levels in the plants as deficient, critical, or sufficient. The chemical analysis of N content in the coffee leaves, as well as the VI values in sample points, were used as input parameters for the image training and its classification by the RF. The suggested model has shown global accuracy and a kappa coefficient of up to 0.91 and 0.86, respectively. The best results were achieved using the Green Normalized Difference Vegetation (GNDVI) and Green Optimized Soil Adjusted Vegetation Index (GOSAVI). In addition, the model enabled the evaluation of the spatial distribution of N in the coffee trees, as well as quantification of N deficiency in the crop for the whole area. The GNDVI and GOSAVI allowed the verification that 22% of the entire crop area had plants with N deficiency symptoms, which would result in a reduction of 78% in the amount of N applied by the producer.
Currently, images from unmanned aerial vehicles (UAVs) are being used due to their high spatial and temporal resolution. Studies comparing different mobile data acquisition platforms, such as satellites, are important due to the limited spatial and temporal resolution of some satellites as well of the presence of clouds in such images. The objective of this study was to compare the vegetation indices (VIs) generated from images obtained by orbital (satellite) and sub-orbital (unmanned aerial vehicles-UAV) platforms. The experiment was conducted in a maize-growing area in Paraná, Brazil. Landsat 8 and UAV images of the study area were collected. Four VIs were applied: NDVI, VIgreen, ExG and VEG. The NDVI was selected as the control and compared with the other VIs. There was a good correlation (0.79) between the NDVI and the VEG for the UAV images. For the Landsat images, the highest correlation found was between the NDVI and the VIgreen derived from UAV images, which was 0.89. It is concluded that the images obtained by UAVs generated better indices, mainly in the dry season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.