Risk mapping processes in mine planning and ore recovery are constantly used in the mining industry to increase decision making certainty based on the available information. However, it is not possible to predict the risk behavior in all of the project's boundary conditions and small variations in some of these conditions can cause a great impact on its financial return. Among the countless uncertainties existing in a mining project (operational, costs, market change), many authors define the geological uncertainty as the most critical one, capable of influencing the success of the project. Measurement and evaluation of the geological uncertainty of a mine planning project is crucial because the calculated risk can be translated into a financial risk of the project. This article presents a possible way to consider the geological uncertainty in the pit optimization step by using sequential Gaussian simulation. The results obtained from the case study on a copper deposit results in a simple procedure with significant increase in reliability for the project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.