We generalize the recently proposed mechanism by Demirtas, Kim, McAllister and Moritz [1] for the explicit construction of type IIB flux vacua with |W 0 | ≪ 1 to the region close to the conifold locus in the complex structure moduli space. For that purpose tools are developed to determine the periods and the resulting prepotential close to such a codimension one locus with all the remaining moduli still in the large complex structure regime. As a proof of principle we present a working example for the Calabi-Yau manifold ℙ 1,1,2,8,12. [24]
We study the symmetric square of Picard-Fuchs operators of genus one curves and the thereby induced generalized Clausen identities. This allows the computation of analytic expressions for the periods of all one-parameter K3 manifolds in terms of elliptic integrals. The resulting expressions are globally valid throughout the moduli space and allow the explicit inversion of the mirror map and the exact computation of distances, useful for checks of the Swampland Distance Conjecture. We comment on the generalization to multi-parameter models and provide a two-parameter example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.