Persistent infection with some types of mucosal human papillomavirus (HPV) is the etiological factor for the development of cervical cancer and its precursor lesions. Besides, several cofactors are known to play a role in cervical disease onset and progression either by favoring or by preventing HPV infection and persistence. The microbiome of a healthy female genital tract is characterized by the presence of 1 or few varieties of lactobacilli. However, high-throughput studies addressing the bacterial diversity and abundance in the female genital tract have shown that several factors, including hormonal levels, hygiene habits, and sexually transmitted diseases may disrupt the natural balance, favoring the outgrowth of some groups of bacteria, which in turn may favor some pathological states. Recently, the vaginal microbiome has emerged as a new variable that could greatly influence the natural history of HPV infections and their clinical impact. In this context, changes in the vaginal microbiome have been detected in women infected with HPV and women with HPV-associated lesions and cancer. However, the role of specific bacteria groups in the development/progression or prevention/regression of HPV-associated pathologies is not well understood. In this review we summarize the current knowledge concerning changes in vaginal microbiome and cervical disease. We discuss the potential functional interplay between specific bacterial groups and HPV infection outcomes.
BackgroundHuman papillomavirus (HPV) prevalence in head and neck squamous cell carcinomas (HNSCC) diverges geographically. The reliability of using p16INK4a expression as a marker of viral infection is controversial in HNSCC. We evaluated HPV types and HPV-16 variants prevalence, and p16INK4a expression in HNSCC specimens provided by two different Institutions in São Paulo.MethodsHPV DNA from formalin-fixed specimens was accessed by Inno-LiPA, HPV-16 variants by PCR-sequencing, and p16INK4a protein levels by immunohistochemistry.ResultsOverall, HPV DNA was detected among 19.4 % of the specimens (36/186). Viral prevalence was higher in the oral cavity (25.0 %, 23/92) then in other anatomical sites (oropharynx 14,3 %, larynx 13.7 %) when samples from both Institutions were analyzed together. HPV prevalence was also higher in the oral cavity when samples from both Institutions were analyzed separately. HPV-16 was the most prevalent type identified in 69.5 % of the HPV positive smaples and specimens were assigned into Asian-American (57.2 %) or European (42.8 %) phylogenetic branches. High expression of p16INK4a was more common among HPV positive tumors.ConclusionOur results support a role for HPV-16 in a subset of HNSCC.
Most human papillomavirus infections are readily cleared by the host immune response. However, in some individuals, human papillomavirus can establish a persistent infection. The persistence of high-risk human papillomavirus infection is the major risk factor for cervical cancer development. These viruses have developed mechanisms to evade the host immune system, which is an important step in persistence and, ultimately, in tumor development. Several cell types, receptors, transcription factors and inflammatory mediators involved in the antiviral immune response are viral targets and contribute to tumorigenesis. These targets include antigen-presenting cells, macrophages, natural killer cells, Toll-like receptors, nuclear factor kappa B and several cytokines and chemokines, such as interleukins, interferon and tumor necrosis factor. In the present review, we address both the main innate immune response mechanisms involved in HPV infection clearance and the viral strategies that promote viral persistence and may contribute to cancer development. Finally, we discuss the possibility of exploiting this knowledge to develop effective therapeutic strategies.
OBJECTIVES: Oxidative stress results from an imbalance between the generation and elimination of oxidant species. This condition may result in DNA, RNA and protein damage, leading to the accumulation of genetic alterations that can favor malignant transformation. Persistent infection with high-risk human papillomavirus types is associated with inflammatory responses and reactive oxygen species production. In this context, oxidative stress, chronic inflammation and high-risk human papillomavirus can act in a synergistic manner. To counteract the harmful effects of oxidant species, protective molecules, known as antioxidant defenses, are produced by cells to maintain redox homeostasis. In recent years, the use of natural antioxidants as therapeutic strategies for cancer treatment has attracted the attention of the scientific community. This review discusses specific molecules and mechanisms that can act against or together with oxidative stress, presenting alternatives for cervical cancer prevention and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.