New sodium-based battery concepts require solid electrolytes as ion conducting separators. Besides NaSICON and b-Al2O3 in the Na2O-R2O3-SiO2 system (R = rare earth), a rarely noticed glass-ceramic solid electrolyte with the composition Na5RSi4O12 (N5-type) exists. The present study addresses the investigation of the ionic conductivity of Na5RSi4O12 solid electrolytes sintered from pre-crystallized glass-ceramic powders. The sintering behavior (optical dilatometry), the microstructure (SEM/EDX), and phase composition (XRD), as well as electrochemical properties (impedance spectroscopy), were investigated. To evaluate the effect of the ionic radii, Y, Sm and Gd rare elements were chosen. All compositions were successfully synthesized to fully densified compacts having the corresponding conducting N5-type phase as the main component. The densification behavior was in agreement with the melting point, which decreased with increasing ionic radii and specific cell volume. Alternatively, the ionic conductivities of N5-phases decreased from Y to Gd and Sm containing samples. The highest ionic conductivity of 1.82·10−3 S cm−1 at 20 °C was obtained for Na5YSi4O12 composition. The impact of grain boundaries and bulk conductivity on measured values is discussed. A powder-based synthesis method of this glass-ceramic solid electrolyte using different rare earth elements opens possibilities for optimizing ionic conductivity and scalable technological processing by tape casting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.