During the in‐situ incorporation of an organophilic clay into the polymer matrix in a free radical polymerization, the radical should penetrate the basal space between the layers of the clay increasing the distance between these layers and leading to a nanocomposite with an intercalated or exfoliated morphology. The final morphology depends on the affinity of the monomer for the cation used to change the organophilicity of the clay. In this work, Foster swelling is applied as a method to obtain a degree of affinity of the clay for the monomer. The objective of this work is to study the effect of the Foster swelling degree on the final polystyrene/clay composite obtained by free‐radical polymerization of styrene containing organophilic clay. Some commercial organophilic clays with different Foster swelling degree were employed and the incorporation of the clays into polymer was carried out in bulk styrene polymerization reactions. The X‐ray diffraction (XRD) reveals the basal spacing of the clays before and after in‐situ incorporation indicating the morphology of the nanocomposite. The nanocomposites were also characterized by thermal gravimetric analysis (TGA). Results showed a correlation between Foster swelling degree and the morphology obtained. High values of Foster swelling degree lead to exfoliated polystyrene/clay nanocomposites, whereas decreasing this value intercalated, partially intercalated and only dispersed composites were obtained depending on the degree of affinity of the monomer for the clay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.