The Gulf of Cadiz, located at the southwestern Iberian margin, is characterized by widespread seismicity, compressional and strike‐slip fault plane solutions and by a large, elongated positive free‐air gravity anomaly, the Gulf of Cadiz Gravity High (GCGH). Multichannel seismic profiles across and along GCGH, together with bathymetric and gravity data, allow us to study in detail the tectonic architecture and crustal structure of the Gulf of Cadiz. The upper shelf and slope of the Gulf of Cadiz includes the main structural domains of the Betic fold and thrust belt. In the middle part of the Gulf, the Paleozoic basement crops out on the shallow Guadalquivir Bank and is associated with the largest signature of the GCGH, whereas toward the outer part of the Gulf, the basement deepens progressively. A large NW‐SE normal fault and conjugate NE‐SW faults define a prominent basement high associated with the GCGH. Modeling of the GCGH suggests localized crustal thinning of 10 km along the central part of the Gulf of Cadiz, probably generated during the Mesozoic rifting episode between the Iberian and African plates. Concentric wedges of fold and thrust belts and large allochthonous masses were emplaced in the Gulf of Cadiz during the Neogene compressional phase. The final emplacement of these units becomes progressively young from the SE (pre‐early Langhian) toward the foreland in the NW (late Tortonian). Seafloor surface ruptures, pockmarks, and submarine landslides provide evidence of active faulting in the Gulf of Cadiz. To accommodate the present‐day convergence between the African and Eurasian plates, previously extensional faults have probably been reactivated and inverted at depth, as suggested by the intermediate depth seismicity.
International audienceWe investigate the crustal structure of the SW Iberian margin along a 340 km-long refraction and wide-angle reflection seismic profile crossing from the central Gulf of Cadiz to the Variscan continental margin in the Algarve, Southern Portugal. The seismic velocity and crustal geometry model obtained by joint refraction and reflection travel-time inversion reveal three distinct crustal domains: the 28-30 km-thick Variscan crust in the north, a 60 km-wide transition zone offshore, where the crust abruptly thins ~ 20 km, and finally a ~ 7 km-thick and ~ 150 km-wide crustal section that appears to be oceanic in nature. The oceanic crust is overlain by a 1-3 km-thick section of Mesozoic to Eocene sediments, with an additional 3-4 km of low-velocity, unconsolidated sediments on top belonging to the Miocene age, Gulf of Cadiz imbricated wedge. The sharp transition between continental and oceanic crust is best explained by an initial rifting setting as a transform margin during the Early Jurassic that followed the continental break-up in the Central Atlantic. The narrow oceanic basin would have formed during an oblique rifting and seafloor spreading episode between Iberia and Africa that started shortly thereafter (Bajocian) and lasted up to the initiation of oceanic spreading in the North Atlantic at the Tithonian (late Jurassic-earliest Cretaceous). The velocity model displays four wide, prominent, south-dipping low-velocity anomalies, which seem to be related with the presence of crustal-scale faults previously identified in the area, some of which could well be extensional faults generated during this rifting episode. We propose that this oceanic plate segment is the last remnant of an oceanic corridor that once connected the Alpine-Tethys with the Atlantic ocean, so it is, in turn, one of the oldest oceanic crustal fragments currently preserved on Earth. The presence of oceanic crust in the central Gulf of Cadiz is consistent with geodynamic models suggesting the existence of a narrow, westward retreating oceanic slab beneath the Gibraltar arc-Alboran basin system
We present a new classification of geological domains at the Africa-Eurasia plate boundary off SW Iberia, together with a regional geodynamic reconstruction spanning from the Mesozoic extension to the Neogene-to-present-day convergence. It is based on seismic velocity and density models along a new transect running from the Horseshoe to the Seine abyssal plains, which is combined with previously available geophysical models from the region. The basement velocity structure at the Seine Abyssal Plain indicates the presence of a highly heterogeneous, thin oceanic crust with local high-velocity anomalies possibly representing zones related to the presence of ultramafic rocks. The integration of this model with previous ones reveals the presence of three oceanic domains offshore SW Iberia: (1) the Seine Abyssal Plain domain, generated during the first stages of slow seafloor spreading in the NE Central Atlantic (Early Jurassic); (2) the Gulf of Cadiz domain, made of oceanic crust generated in the Alpine-Tethys spreading system between Iberia and Africa, which was coeval with the formation of the Seine Abyssal Plain domain and lasted up to the North Atlantic continental breakup (Late Jurassic); and (3) the Gorringe Bank domain, made of exhumed mantle rocks, which formed during the first stages of North Atlantic opening. Our models suggest that the Seine Abyssal Plain and Gulf of Cadiz domains are separated by the Lineament South strike-slip fault, whereas the Gulf of Cadiz and Gorringe Bank domains appear to be limited by a deep thrust fault located at the center of the Horseshoe Abyssal Plain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.