The emergence and rapid worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted the scientific community to rapidly develop in vitro and in vivo models that could be applied in COVID-19 research. In vitro models include two-dimensional (2D) cultures of immortalized cell lines or primary cells and three-dimensional (3D) cultures derived from lung, alveoli, bronchi, and other organs. Although cell-based systems are economic and allow strict control of experimental variables, they do not always resemble physiological conditions. Thus, several in vivo models are being developed, including different strains of mice, hamsters, ferrets, dogs, cats, and non-human primates. In this review, we summarize the main models of SARS-CoV-2 infection developed so far and discuss their advantages, drawbacks and main uses.
Helicobacter pylori is a Gram-negative, microaerophilic, curved-rod, flagellated bacterium commonly found in the stomach mucosa and associated with different gastrointestinal diseases. With high levels of prevalence worldwide, it has developed resistance to the antibiotics used in its therapy. Brazilian red propolis has been studied due to its biological properties, and in the literature, it has shown promising antibacterial activities. The aim of this study was to evaluate anti-H. pylori from the crude hydroalcoholic extract of Brazilian red propolis (CHEBRP). For this, in vitro determination of the minimum inhibitory and bactericidal concentration (MIC/MBC) and synergistic activity and in vivo, microbiological, and histopathological analyses using Wistar rats were carried out using CHEBRP against H. pylori strains (ATCC 46523 and clinical isolate). CHEBRP presented MIC/MBC of 50 and 100 μg/mL against H. pylori strains (ATCC 43526 and clinical isolate, respectively) and tetracycline MIC/MBC of 0.74 µg/mL. The association of CHEBRP with tetracycline had an indifferent effect. In the stomach mucosa of rats, all treatments performed significantly decreased the number of H. pylori, and a concentration of 300 mg/kg was able to modulate the inflammatory response in the tissue. Therefore, CHEBRP showed promising anti-H. pylori in in vitro and in vivo assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.