We have functionalized the sides of fd bacteriophage virions with oligonucleotides to induce DNA hybridization driven self-assembly of high aspect ratio filamentous particles. Potential impacts of this new structure range from an entirely new building block in DNA origami structures, inclusion of virions in DNA nanostructures and nanomachines, to a new means of adding thermotropic control to lyotropic liquid crystal systems. A protocol for producing the virions in bulk is reviewed. Thiolated oligonucleotides are attached to the viral capsid using a heterobifunctional chemical linker. A commonly used system is utilized, where a sticky, single-stranded DNA strand is connected to an inert double-stranded spacer to increase inter-particle connectivity. Solutions of fd virions carrying complementary strands are mixed, annealed, and their aggregation is studied using dynamic light scattering (DLS), fluorescence microscopy, and atomic force microscopy (AFM). Aggregation is clearly observed on cooling, with some degree of local order, and is reversible when temperature is cycled through the DNA hybridization transition.
In the presence of a non-adsorbing poylmer, monodisperse rod-like colloids assemble into one-rod-length thick liquid-like monolayers, called colloidal membranes. The density of the rods within a colloidal membrane is determined by a balance between the osmotic pressure exerted by the enveloping polymer suspension and the repulsion between the colloidal rods. We developed a microfluidic device for continuously observing an isolated membrane while dynamically controlling the osmotic pressure of the polymer suspension. Using this technology we measured the membrane rod density over a range of osmotic pressues than is wider that what is accesible in equilibrium samples. With increasing density we observed a first-order phase transition, in which the in-plane membrane order transforms from a 2D fluid into a 2D solid. In the limit of low osmotic pressures, we measured the rate at which individual rods evaporate from the membrane. The developed microfluidic technique could have wide applicabilty for in situ investigation of various soft materials and how their properties depend on the solvent composition
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.