BACKGROUND Soybean aphid, Aphis glycines (Hemiptera: Aphididae), remains the most significant soybean insect pest in the North Central Region of the USA. The sustainability of reliance on only a few insecticide groups for this pest is questionable. We evaluate afidopyropen, a novel pyropene insecticide (Group 9D), for efficacy against A. glycines in field and greenhouse experiments and toxicity to common natural enemies in laboratory experiments. RESULTS Across 4 site‐years of field experiments and a greenhouse experiment, afidopyropen reduced A. glycines populations similar to commonly used broad‐spectrum [i.e. lambda‐cyhalothrin (Group 3A) and chlorpyrifos (Group 1B)] insecticides and potential selective insecticides [i.e. sulfoxaflor (Group 4C) and flupyradifurone (Group 4D)]. In the greenhouse, however, A. glycines mortality was delayed slightly for afidopyropen compared to the other insecticides. In laboratory experiments with natural enemies of A. glycines, afidopyropen was not toxic to adult or third instar Hippodamia convergens (Coleoptera: Coccinellidae) or adult Orius insidiosus (Hemiptera: Anthocoridae), and was only moderately toxic to Aphelinus certus (Hymenoptera: Aphelinidae). CONCLUSION Afidopyropen is effective against A. glycines and relatively non‐toxic to natural enemies, and appears to be an effective option for integrated pest management and insecticide resistance management programs for A. glycines. © 2019 Society of Chemical Industry
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is an invasive species to North America and has spread throughout most of the territory. Understanding flight in H. halys is crucial to understanding the dispersal capacity and developing forecasting models for this pest. The purpose of this research was to assess the effects of starvation, age, mating status, sex, and preflight weight on flight parameters of laboratory-reared H. halys using computer-monitored flight mills. The mean flight distance observed over a 24-h period was 266 m and the maximum distance was 7.3 km. Overall, the flight capacity of males and females was similar, even though females weighed more than males. The proportion of H. halys that initiated flight was not affected by starvation, age, or mating status. The number of bouts of individual flights and velocity significantly increased with longer durations of starvation. The number of bouts significantly decreased with increasing age. The total distance flew and total flight time was not affected by starvation, age, or mating status. Although some statistical differences were seen across the experiments, these differences likely represent minimal ecological significance. Therefore, these results suggest that H. halys are remarkably resilient, which may contribute to their success as an invasive species. The findings of this study could help better predict the dispersal potential of H. halys in Minnesota.
In natural ecosystems, arthropod predation on herbivore prey is higher at lower latitudes, mirroring the latitudinal diversity gradient observed across many taxa. This pattern has not been systematically examined in human‐dominated ecosystems, where frequent disturbances can shift the identity and abundance of local predators, altering predation rates from those observed in natural ecosystems. We investigated how latitude, biogeographical, and local ecological factors influenced arthropod predation in Brassica oleracea‐dominated agroecosystems in 55 plots spread among 5 sites in the United States and 4 sites in Brazil, spanning at least 15° latitude in each country. In both the United States and Brazil, arthropod predator attacks on sentinel model caterpillar prey were highest at the highest latitude studied and declined at lower latitudes. The rate of increased arthropod attacks per degree latitude was higher in the United States and the overall gradient was shifted poleward as compared to Brazil. PiecewiseSEM analysis revealed that aridity mediates the effect of latitude on arthropod predation and largely explains the differences in the intensity of the latitudinal gradient between study countries. Neither predator richness, predator density, nor predator resource availability predicted variation in predator attack rates. Only greater non‐crop plant density drove greater predation rates, though this effect was weaker than the effect of aridity. We conclude that climatic factors rather than ecological community structure shape latitudinal arthropod predation patterns and that high levels of aridity in agroecosystems may dampen the ability of arthropod predators to provide herbivore control services as compared to natural ecosystems.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), continues to be the most economically important arthropod pest of soybean in the Midwest. Currently, management tactics for A. glycines rely on scouting and application of broad-spectrum insecticides. However, broadspectrum insecticides are toxic to most natural enemies of this aphid. Selective insecticides may provide an alternative strategy for suppressing A. glycines populations while conserving populations of its natural enemies. Therefore, the aim of this study was to evaluate the potential lethal and sublethal effects of sulfoxaflor (a relatively new selective insecticide), to 2 of this pest's natural enemies, Chrysoperla rufilabris (Burmeister) (Neuroptera: Chrysopidae) and Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae). Laboratory bioassays were performed on first instars of both predators with residual toxicity evaluated over time until adult emergence. Parameters evaluated were mortality and developmental time for larvae and pupae, and adult body size. Fecundity also was determined for C. rufilabris. We found that sulfoxaflor was not toxic to first instar C. rufilabris. However, developmental time to adult was significantly delayed after exposure to this insecticide, but fecundity and body size were not negatively affected. For H. convergens, sulfoxaflor at 25% of the field rate was toxic to first instars. No significant differences were found with regard to developmental time and body size. It is important to note that sulfoxaflor, though relatively less toxic than some insecticides, is not entirely without consequence if natural enemies are exposed. The present study emphasizes the importance of examining earlier life stages and potential sublethal effects when evaluating the toxicity of insecticides in the presence of natural enemies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.