In this work, we deal with the problem of packing (orthogonally and without overlapping) identical rectangles in a rectangle. This problem appears in different logistics settings, such as the loading of boxes on pallets, the arrangements of pallets in trucks and the stowing of cargo in ships. We present a recursive partitioning approach combining improved versions of a recursive five-block heuristic and an L-approach for packing rectangles into larger rectangles and L-shaped pieces. The combined approach is able to rapidly find the optimal solutions of all instances of the pallet loading problem sets Cover I and II (more than 50 000 instances). It is also effective for solving the instances of problem set Cover III (almost 100 000 instances) and practical examples of a woodpulp stowage problem, if compared to other methods from the literature. Some theoretical results are also discussed and, based on them, efficient computer implementations are introduced. The computer implementation and the data sets are available for benchmarking purposes.
In this paper, continuous and differentiable nonlinear programming models and algorithms for packing ellipsoids in the n-dimensional space are introduced. Two different models for the non-overlapping and models for the inclusion of ellipsoids within half-spaces and ellipsoids are presented. By applying a simple multi-start strategy combined with a clever choice of starting guesses and a nonlinear programming local solver, illustrative numerical experiments are presented.
In this paper, we address the constrained two‐dimensional rectangular guillotine single large placement problem (2D_R_CG_SLOPP). This problem involves cutting a rectangular object to produce smaller rectangular items from orthogonal guillotine cuts. In addition, there is an upper limit on the number of copies that can be produced of each item type. To model this problem, we propose a new pseudopolynomial integer nonlinear programming (INLP) formulation and obtain an equivalent integer linear programming (ILP) formulation from it. Additionally, we developed a procedure to reduce the numbers of variables and constraints of the integer linear programming (ILP) formulation, without loss of optimality. From the ILP formulation, we derive two new pseudopolynomial models for particular cases of the 2D_R_CG_SLOPP, which consider only two‐staged or one‐group patterns. Finally, as a specific solution method for the 2D_R_CG_SLOPP, we apply Benders decomposition to the proposed ILP formulation and develop a branch‐and‐Benders‐cut algorithm. All proposed approaches are evaluated through computational experiments using benchmark instances and compared with other formulations available in the literature. The results show that the new formulations are appropriate in scenarios characterized by few item types that are large with respect to the object's dimensions.
In this study, a dynamic programming approach to deal with the unconstrained twodimensional non-guillotine cutting problem is presented. The method extends the recently introduced recursive partitioning approach for the manufacturer's pallet loading problem. The approach involves two phases and uses bounds based on unconstrained two-staged and non-staged guillotine cutting. The method is able to find the optimal cutting pattern of a large number of problem instances of moderate sizes known in the literature and a counterexample for which the approach fails to find known optimal solutions was not found. For the instances that the required computer runtime is excessive, the approach is combined with simple heuristics to reduce its running time. Detailed numerical experiments show the reliability of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.