Here we demonstrate the application of a dynamic covalent chemistry methodology for the synthesis of [2]- and [3]-rotaxanes not only in solution, but also on solid supports with 65% rotaxane functionalisation of the polymer resins observed.
Controlled and complete assembly of supramolecular systems on solid supports is a challenge that would elevate the function of interlocked architectures. Building on the success of other dynamic covalent synthetic...
Since the advent of supramolecular chemistry, there has been keen interest in the synthesis of interlocked molecules, given their unique potential to act as receptors, molecular machines and even motors. Despite advances in the complexity of molecular machines that can be synthesised and operated in solution, reports of the operation or even attachment of complex supramolecular systems on solid surfaces are less common. Synthetic challenges and a lack of adequate characterisation techniques to monitor the thermodynamic and kinetic influences governing assembly at the solution–surface interface has slowed progress in this area of research. This Review looks at the developments in the field of covalently assembled interlocked architectures on gold, silica and polymer surfaces, highlighting the differences observed between solution and surface assembly of these unique structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.