Extracellular vesicles (EVs) are small membrane-limited structures derived from outward budding of the plasma membrane or endosomal system that participate in cellular communication processes through the transport of bioactive molecules to recipient cells. To date, there are no published methodological works showing step-by-step the isolation, characterization and internalization of small EVs secreted by human primary macrophages derived from circulating monocytes (MDM-derived sEVs). Thus, here we aimed to provide an alternative protocol based on differential ultracentrifugation (dUC) to describe small EVs (sEVs) from these cells. Monocyte-derived macrophages were cultured in EV-free medium during 24, 48 or 72 h and, then, EVs were isolated from culture supernatants by (dUC). Macrophages secreted a large amount of sEVs in the first 24 h, with size ranging from 40-150 nm, peaking at 105 nm, as evaluated by nanoparticle tracking analysis and scanning electron microscopy. The markers Alix, CD63 and CD81 were detected by immunoblotting in EV samples, and the co-localization of CD63 and CD81 after sucrose density gradient ultracentrifugation (S-DGUC) indicated the presence of sEVs from late endosomal origin. Confocal fluorescence revealed that the sEVs were internalized by primary macrophages after three hours of co-culture. The methodology here applied aims to contribute for enhancing reproducibility between the limited number of available protocols for the isolation and characterization of MDM-derived sEVs, thus providing basic knowledge in the area of EV methods that can be useful for those investigators working with sEVs released by human primary macrophages derived from circulating monocytes.
Since the World Health Organization declared the global COVID-19 state of emergency in early 2020, several vaccine candidates have emerged to control SARS-CoV-2, and some of them have been approved and implemented in vaccination campaigns worldwide. Although clinical trials for these vaccines have been carried out using highly controlled methods with accurate immunological tests, clinical questionnaires did not include questions concerning the physical activity profile among volunteers. It has been well established that physical activity plays a pivotal role in the immune response after vaccination, led by the activation of cytokines, antibodies, and cells. This concept should have been considered when evaluating the efficacy of COVID-19 vaccine candidates, particularly in elderly and obese people. Here, we discuss data from the literature providing strong evidence regarding the importance of analyzing physical activity parameters to improve the accuracy of clinical trials on assessing the efficacy of vaccine candidates.
Background. House dust mites are important allergen sources and some of these allergenic proteins may contain carbohydrate moieties, which are able to be isolated using lectins, as Concanavalin A (ConA). This study aimed to investigate allergenicity (IgE) and antigenicity (IgG1 and IgG4) of ConA-unbound and ConA-bound Dermatophagoides pteronyssinus (Dpt) crude extracts using sera of mite-allergic patients as well as inhibition capacity of antibody binding. Material and Methods. We obtained mannose-enriched and mannose-depleted fractions from Dpt by ConA affinity chromatography. Both ConA-bound and ConA-unbound fractions were evaluated by ELISA and Western Blotting for specific IgE, IgG1, and IgG4 reactivity with sera obtained from 95 mite-allergic patients (DP+) and 92 nonallergic (NA) subjects. Inhibition ELISA was used to assess cross-reactivity between Dpt extract and its fractions. Results. Among the DP+ patients, no difference was found between ConA-unbound and ConA-bound fractions regarding the levels of specific IgE, IgG1, and IgG4. Nonallergic subjects had the same levels of specific IgG1 to both ConA-unbound and ConA-bound fractions, although for specific IgG4, values were higher for ConA-bound. A positive correlation was found among specific IgE, IgG1, and IgG4 levels when Dpt was compared to ConA-unbound and ConA-bound fractions. Recognition of crude Dpt by IgE, IgG1, and IgG4 was highly inhibited by ConA-unbound and ConA-bound fractions. Western Blotting revealed a broad spectrum of bands ranging from 14 to 116 kDa recognized by specific IgE and IgG4. However, IgG1 reached higher frequency values on high molecular weight polypeptides. Conclusion. ConA-unbound and ConA-bound fractions derived from D. pteronyssinus crude extract revealed important components involved in the IgE recognition in allergic patients as well as IgG1 and/or IgG4 in allergic and healthy subjects.
BACKGROUND Leptospirosis is an emerging zoonosis that affects humans and animals. Immunochromatography rapid test is widely used for early diagnosis of leptospirosis, but with low sensitivity and specificity. OBJECTIVES To evaluate Leptospira interrogans insoluble fraction as a potential antigen source for lateral flow immunochromatography. METHODS Insoluble fraction derived from the crude bacterial extract was obtained by serial centrifugation. The polypeptide profile was determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immune reactivity of this fraction was assessed by Western Blotting and lateral flow immunochromatography (LFI). It was tested 160 microagglutination test (MAT)-positive sera from patients in the acute phase, 100 MAT-negative sera from patients with acute febrile illness, and 45 patients with other infectious diseases. FINDINGS There was a predominance of low molecular mass-polypeptide bands, ranging from 2 to 37 kDa. The antibody reactivity of theses polypeptides was found to range from 13-50%, especially between 10 and 38 kDa. Among MAT-positive sera of patients with leptospirosis in the acute phase, 97% were also positive in LFI, indicating high sensitivity. Among MAT-negative sera, all were negative in LFI, indicating high specificity. Only 2% of cross-reactivity was detected. CONCLUSION The insoluble fraction can be a valuable antigen source for development of point-of-care diagnosis test for leptospirosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.