In this paper, we propose a novel multiclass classifier for the open-set recognition scenario. This scenario is the one in which there are no a priori training samples for some classes that might appear during testing. Usually, many applications are inherently open set. Consequently, successful closed-set solutions in the literature are not always suitable for real-world recognition problems. The proposed open-set classifier extends upon the Nearest-Neighbor (NN) classifier. Nearest neighbors are simple, parameter independent, multiclass, and widely used for closed-set problems. The proposed Open-Set NN (OSNN) method incorporates the ability of recognizing samples belonging to classes that are unknown at training time, being suitable for open-set recognition. In addition, we explore evaluation measures for open-set problems, properly measuring the resilience of methods to unknown classes during testing. For validation, we consider large freely-available benchmarks with different openset recognition regimes and demonstrate that the proposed OSNN significantly outperforms their counterparts in the literature.
Flooding is the world's most costly type of natural disaster in terms of both economic losses and human causalities. A first and essential procedure towards flood monitoring is based on identifying the area most vulnerable to flooding, which gives authorities relevant regions to focus. In this work, we propose several methods to perform flooding identification in highresolution remote sensing images using deep learning. Specifically, some proposed techniques are based upon unique networks, such as dilated and deconvolutional ones, while other was conceived to exploit diversity of distinct networks in order to extract the maximum performance of each classifier. Evaluation of the proposed methods were conducted in a high-resolution remote sensing dataset. Results show that the proposed algorithms outperformed state-of-the-art baselines, providing improvements ranging from 1 to 4% in terms of the Jaccard Index.
The classification accuracy obtained by the proposed method with the novel descriptor in the ultrasound tissue images (around 73%) is significantly above the accuracy of the state-of-the-art threshold-based methods (around 54%). The results are validated by statistical tests. The correlation between the virtual and real histology confirms the quality of the proposed approach showing it is a robust ally for the virtual histology in ultrasound images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.