These are the first reports of P. falciparum Pfhrp2/3 deletion mutants in Angola. High-throughput multiplex antigen detection can inexpensively screen for low density P. falciparum, non-falciparum, and Pfhrp2/3-deleted malaria parasites to provide population-level antigen estimates and identify specimens requiring further molecular characterization.
Detection of histidine-rich protein 2 (HRP2) from the malaria parasite Plasmodium falciparum provides evidence for active or recent infection, and is utilized for both diagnostic and surveillance purposes, but current laboratory immunoassays for HRP2 are hindered by low sensitivities and high costs. Here we present a new HRP2 immunoassay based on antigen capture through a bead-based system capable of detecting HRP2 at sub-picogram levels. The assay is highly specific and cost-effective, allowing fast processing and screening of large numbers of samples. We utilized the assay to assess results of HRP2-based rapid diagnostic tests (RDTs) in different P. falciparum transmission settings, generating estimates for true performance in the field. Through this method of external validation, HRP2 RDTs were found to perform well in the high-endemic areas of Mozambique and Angola with 86.4% and 73.9% of persons with HRP2 in their blood testing positive by RDTs, respectively, and false-positive rates of 4.3% and 0.5%. However, in the low-endemic setting of Haiti, only 14.5% of persons found to be HRP2 positive by the bead assay were RDT positive. Additionally, 62.5% of Haitians showing a positive RDT test had no detectable HRP2 by the bead assay, likely indicating that these were false positive tests. In addition to RDT validation, HRP2 biomass was assessed for the populations in these different settings, and may provide an additional metric by which to estimate P. falciparum transmission intensity and measure the impact of interventions.
BackgroundRapid diagnostic test (RDT) positivity is supplanting microscopy as the standard measure of malaria burden at the population level. However, there is currently no standard for externally validating RDT results from field surveys.MethodsIndividuals’ blood concentration of the Plasmodium falciparum histidine rich protein 2 (HRP2) protein were compared to results of HRP2-detecting RDTs in participants from field surveys in Angola, Mozambique, Haiti, and Senegal. A logistic regression model was used to estimate the HRP2 concentrations corresponding to the 50 and 90% level of detection (LOD) specific for each survey.ResultsThere was a sigmoidal dose–response relationship between HRP2 concentration and RDT positivity for all surveys. Variation was noted in estimates for field RDT sensitivity, with the 50% LOD ranging between 0.076 and 6.1 ng/mL and the 90% LOD ranging between 1.1 and 53 ng/mL. Surveys conducted in two different provinces of Angola using the same brand of RDT and same study methodology showed a threefold difference in LOD.ConclusionsMeasures of malaria prevalence estimated using population RDT positivity should be interpreted in the context of potentially large variation in RDT LODs between, and even within, surveys. Surveys based on RDT positivity would benefit from external validation of field RDT results by comparing RDT positivity and antigen concentration.Electronic supplementary materialThe online version of this article (10.1186/s12936-017-2101-8) contains supplementary material, which is available to authorized users.
BackgroundMalaria is the major cause of morbidity and mortality in Angola. The most vulnerable groups to Plasmodium falciparum infection are pregnant women and children under five years of age. The use of an intermittent preventive treatment (IPT) with sulphadoxine/pyrimethamine (SP) in pregnant women was introduced in Angola in 2006 by the National Malaria Control Programme, and currently this strategy has been considered to be used for children malaria control. Considering the previous wide use of SP combination in Angola, together to the reported cases of SP treatment failure it is crucial the evaluation of the prevalence of five mutations in pfdhfr and pfdhps genes associated to P. falciparum resistance to SP before the introduction of S/P IPT in children.MethodsThe study was conducted in five provinces, with different transmission intensities: Huambo, Cabinda, Uíge, Kwanza Norte, and Malanje. The detection of the mutations in pfdhfr and pfdhps genes was carried out in 452 P. falciparum blood samples by PCR RFLP.ResultsFor pfdhfr gene, 90,3% of the samples carried the mutation 51I, with 7.5% of mixed infections; 51% carried wild type allele 59C, with 29.2% mixed infections and; 99.1% of isolates harboured the mutant allele 108N. Concerning, pfdhps gene, 83,1% were mutant type 437G with 11% mixed infections , while 87% of the studied isolates were wild type for codon 540.DiscussionThis is the first representative epidemiological study of the whole Angola country on the prevalence of the genotypes associated with SP chemoresistance. A high frequency of individual mutations in both genes (51I and 108N in pfdhfr, and 437G in pfdhps) was found, besides a low prevalence of the quintuple mutation.ConclusionThe data showed that the implementation IPT using SP in children needs to be reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.