Partículas de sílica dopadas com o complexo quercetina-Al 3+ foram preparadas através da hidrólise e condensação do tetraetilortossilicato (TEOS) utilizando catálise ácida e básica. A catálise ácida resultou em partículas com diâmetro em torno de 200 nm. A catálise básica com TEOS foi executada sobre um sol de alumina dopado com quercetina utilizado como precursor caroço e com este procedimento foram obtidas partículas fluorescentes de SiO 2 na forma de dedos. Os decaimentos de fluorescência do sistema quercetina-alumina-SiO 2 são biexponenciais e este caráter é atribuído aos dois tipos de complexos quercetina-Al 3+ encapsulados no caroço do sistema.Silica particles doped with quercetin-Al 3+ complex were prepared by hydrolysis and condensation of tetraethylorthosilicate (TEOS) using acid and basic catalysis. The acid catalysis resulted in particles with diameter about 200 nm. Basic catalysis with TEOS was performed over a quercetin doped alumina-sol used as a core precursor, and fluorescent finger-shaped SiO 2 particles were obtained. The quercetin-alumina-SiO 2 fluorescence decays are biexponential, and this character is ascribed to two types of quercetin-Al 3+ complexes entrapped in the core of the system.
The combination of a sensitizer and TiO nanoparticles forming a photocatalytic material is a central issue in many fields of applied photochemistry. The charge injection of emissive sensitizers into the conduction band of the semiconductor TiO may form a photoactive region that becomes dark, or it has a very low emission signal due to the generation of sensitizer radicals. However, by sequential coupling of a selected photoredox dye, such as resazurin, the dark region may become fluorescent at the interfaces where the charge injection has taken place due to the concomitant formation of fluorescent resorufin by cascade electron transfer. Using this strategy and a total internal reflection fluorescence microscopy (TIRFM) image, the charge injection in TiO/CdS and SiO/TiO/CdS nanoparticles is investigated The method allows the charge injection efficiency of the excited CdS into TiO to be evaluated qualitatively, explaining the differences observed for these photocatalytic materials in H generation.
In the present work, three types of nanosized hybrid photocatalysts, CdS, CdS/TiO2 and CdS/TiO2/SiO2, were synthesized and used in three photochemical applications: macro and microscopic photodegradation of a dye, photolysis of water to generate H2 monitored by in situ mass spectrometry and study of a redox reaction by wide-field fluorescence microscopy. Scanning (SEM) and transmission (TEM) electronic microscopies showed quasi-monodispersed silica spheres with a diameter of about 300 nm and CdS and TiO2 nanoparticles with a diameter of approximately 5 nm highly agglomerated. The coating of the silica with CdS and TiO2 was not uniform, resulting in "islands" preferentially isolated. Despite the heterogeneous morphology of the photocatalysts, they were efficient in the degradation of a safranine O solution, showing kinetics of first order with respect to dye concentration. With regard to water photolysis, the ternary system (CdS/TiO2/SiO2) showed the highest rate of H2 production (0.79 mmol g-1 h-1) , which indicates more efficient charge transfer or injection between CdS and TiO2 due to better contact between the two semiconductors on the surface of the silica nanoparticles (NPs). This system also was the most efficient photocatalyst in the photorreduction of the nonfluorescent dye resazurin into the fluorescent dye resorufin, monitored by fluorescence intermittency measurements using wide-field microscopy. In general, the systems after adding the dye presented slower fluorescence intermittency, with higher times of off relaxation. The photoreduction of the dye provided an interesting method for mapping the regions of CdS/TiO2 charge injection, initially dark and then with high emission intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.