In this work, Cr(III) adsorption on activated carbon obtained from olive stones in an upflow fixed-bed column at 30 • C was studied. The flow rate influence on the breakthrough curves at a feed concentration of 0.87 meq/L was investigated in an attempt to minimize the diffusional resistances. Breakthrough curves for a flow range of 2-8 mL/min were obtained at 10.5 cm bed height and inlet diameter of 0.9 cm. The mass transfer parameters indicated that the bed minimal resistance was attained at 2 mL/min. Therefore, the data equilibrium was carried out until the bed was saturated at 2 mL/min. The dynamic system generated a favorable isotherm with a maximum chromium uptakeof 0.45 meq/g. A column sorption mathematical model was created considering the axial dispersion in the column and the intraparticle diffusion rate-controlling steps. The isotherm was successfully modeled by the Langmuir equation and the mathematical model described the experimental dynamic data adequately for feed concentrations from 0.26 to 3.29 meq/L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.