Time series prediction appear in many real-world problems, e.g., financial market, signal processing, weather forecasting among others. The underlying models and time series data of those problems are generally complex in a way that reasonable accurate estimation cannot be easily achieved, thus requiring more advanced techniques. Statistical models are the classical approaches for tackling this problem. Many works extended different architectures of Artificial neural networks to work with time series prediction, such as Feedforward, Boltzmann Machines and Deep Belief Network. A Deep Belief Network based on hybridization between Gaussian-Bernoulli Restricted Boltzmann Machine and the Backpropagation algorithm is presented. The hybrid algorithm is tested on three time series databases showing promising results.
We study possibilities and ways to increase automation, efficiency, and digitization of industrial processes by integrating knowledge gained from UAV (unmanned aerial vehicle) images with systems to support managerial decision-making. Here we present our results in the secondary wood processing industry. First, we present a deployed solution for repeated area and volume estimated calculations of wood stock areas from our UAV images in the customer’s warehouse. Processing with the commercial software we use is time-consuming and requires annotation by humans (each time aerial images are processed). Second, we present a partial solution where for computing areas of woodpiles, the only human activity is annotating training images for deep neural networks’ supervised learning (only once in a while). Third, we discuss a multicriterial evaluation of possible improvements concerning the precision, frequency, and processing time. The method uses UAVs to take images of woodpiles, deep neural networks for semantic segmentation, and an algorithm to improve results. (semantic segmentation as image classification at a pixel level). Our experiments compare several architectures, backbones, and hyperparameters on real-world data. To calculate also volumes, the feasibility of our approach and to verify it will function as envisioned is verified by a proof of concept. The exchange of knowledge with industrial processes is mediated by ontological comparison and translation of OWL into UML. Furthermore, it shows the possibility of establishing communication between knowledge extractors from images taken by UAVs and managerial decision systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.