The development of strategies to monitor the applications of pesticides is of primary importance. In the present report, two aspects of the surface‐enhanced Raman scattering (SERS) effect of the fungicide thiram were investigated: quantitative analysis using the standard addition method and the thiram adsorption mechanism onto Ag nanostructures using theoretical approach. Experimentally, SERS intensity varies linearly from 1.0 × 10−8 to 4.0 × 10−7 mol/L with thiram concentration leading to a limit of detection of 1.2 × 10−8 mol/L for the band at 560 cm−1 and 1.7 × 10−9 mol/L for 1386 cm−1. The loss of linearity (above 10−6 mol/L) was associated with changes in the Ag colloid aggregation, also indicated by complementary analyses via UV‐Vis extinction spectroscopy, dynamic light scattering, and zeta potential. The differences in the spectral profiles observed for thiram Raman powder and SERS are ascribed to S–S cleavage, leading the degraded thiram adsorbing to Ag surface not only through S atoms but also through methyl groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.