Purpose The aim of this statement is to present current and comprehensive recommendations for the diagnosis and treatment of acute spontaneous intracerebral hemorrhage (ICH). Methods A formal literature search of Medline was performed. Data were synthesized with the use of evidence tables. Writing committee members met by teleconference to discuss data derived recommendations. The American Heart Association Stroke Council’s Levels of Evidence grading algorithm was used to grade each recommendation. Prerelease review of the draft guideline was performed by 6 expert peer reviewers and by the members of the Stroke Council Leadership Committee. It is intended that this guideline be fully updated in 3 years’ time. Results Evidence-based guidelines are presented for the care of patients presenting with ICH. The focus was sub-divided into diagnosis, hemostasis, blood pressure management, inpatient and nursing management, preventing medical comorbidities, surgical treatment, outcome prediction, rehabilitation, prevention of recurrence, and future considerations. Conclusions ICH is a serious medical condition where outcome can be impacted by early, aggressive care. The guidelines offer a framework for goal directed treatment of the ICH patient.
We studied the effects on saccades of ablation of the dorsal cerebellar vermis (lesions centered on lobules VI and VII) in three monkeys in which the deep cerebellar nuclei were spared. One animal, with a symmetrical lesion, showed bilateral hypometric horizontal saccades. Two animals, with asymmetrical lesions, showed hypometric ipsilateral saccades, and saccades to vertically positioned targets were misdirected, usually deviating away from the side to which horizontal saccades were hypometric. Postlesion, all animals showed an increase (2- to 5-fold) in trial-to-trial variability of saccade amplitude. They also showed a change in the ratio of the amplitudes of centripetal to centrifugal saccades (orbital-position effect); usually centrifugal saccades became smaller. In the two animals with asymmetrical lesions, for saccades in the hypometric direction, latencies were markedly increased (up to approximately 500 ms). There was also an absence of express and anticipatory saccades in the hypometric direction. When overall saccade latency was increased, centrifugal saccades became relatively more delayed than centripetal saccades. The dynamic characteristics of saccades were affected to some extent in all monkeys with changes in peak velocity, eye acceleration, and especially eye deceleration. There was relatively little effect of orbital position on saccade dynamics, however, with the exception of one animal that showed an orbital position effect for eye acceleration. In a double-step adaptation paradigm, animals showed an impaired ability to adaptively adjust saccade amplitude, though increased amplitude variability postlesion may have played a role in this deficit. During a single training session, however, the latency to corrective saccades-which had been increased postlesion-gradually decreased and so enabled the animal to reach the final position of the target more quickly. Overall, both in the early postlesion period and during recovery, changes in saccade amplitude and latency tended to vary together but not with changes in saccade dynamics or adaptive capability, both of which behaved relatively independently. These findings suggest that the cerebellum can adjust saccade amplitude and saccade dynamics independently. Our results implicate the cerebellar vermis directly in every aspect of the on-line control of saccades: initiation (latency), accuracy (amplitude and direction), and dynamics (velocity and acceleration) and also in the acquisition of adaptive ocular motor behavior.
Swollen cerebral and cerebellar infarcts are critical conditions that warrant immediate, specialized neurointensive care and often neurosurgical intervention. Decompressive craniectomy is a necessary option in many patients. Selected patients may benefit greatly from such an approach, and although disabled, they may be functionally independent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.