Background Only few studies describe the impact of nutritive factors on chronic inflammatory demyelinating polyneuropathy (CIDP), an inflammatory disease of the peripheral nervous system. The active component of chili pepper, capsaicin, is the direct agonist of the transient receptor potential channel vanilloid subfamily member 1. Its anti-inflammatory effect in the animal model experimental autoimmune neuritis (EAN) has been previously demonstrated. Methods In the present study, we describe the anti-inflammatory and anti-oxidative influence of capsaicin on Schwann cells (SCs) in an in vitro setting. Hereby, we analyze the effect of capsaicin on Schwann cells’ gene expression pattern, major histocompatibility complex class II (MHC-II) presentation, and H2O2-induced oxidative stress. Furthermore, the effect of capsaicin on myelination was examined in a SC-dorsal root ganglia (DRG) coculture by myelin basic protein staining. Finally, in order to investigate the isolated effect of capsaicin on SCs in EAN pathology, we transplant naïve and capsaicin pre-treated SCs intrathecally in EAN immunized rats and analyzed clinical presentation, electrophysiological parameters, and cytokine expression in the sciatic nerve. Results In SC monoculture, incubation with capsaicin significantly reduces interferon gamma-induced MHC-II production as well as toll-like receptor 4 and intercellular adhesion molecule 1 mRNA expression. Calcitonin gene-related peptide mRNA production is significantly upregulated after capsaicin treatment. Capsaicin reduces H2O2-induced oxidative stress in SC in a preventive, but not therapeutic setting. In a SC-DRG coculture, capsaicin does not affect myelination rate. After intrathecal transplantation of naïve and capsaicin pre-treated SCs in EAN-immunized rats, naïve, but not capsaicin pre-treated intrathecal SCs, ameliorated EAN pathology in rats. Conclusions In conclusion, we were able to demonstrate a direct immunomodulatory and anti-oxidative effect of capsaicin in a SC culture by reduced antigen presentation and expression of an anti-inflammatory profile. Furthermore, capsaicin increases the resistance of SCs against oxidative stress. A primary effect of capsaicin on myelination was not proven. These results are in concordance with previous data showing an anti-inflammatory effect of capsaicin, which might be highly relevant for CIDP patients.
We report the case of a 27‐year‐old patient with subacute anti‐neurofascin‐155 neuropathy with bifacial palsy, who showed excellent response to rituximab. We provide longitudinal data of established clinical scores, nerve conduction studies, antibody titers, and novel imaging methods (nerve ultrasonography and corneal confocal microscopy). Clinical and electrophysiological improvement followed the reduction of serum antibody titer and correlated with a reduction of corneal inflammatory cellular infiltrates whereas the increase in the cross‐sectional area of the peripheral nerves remained 12 months after first manifestation. Our findings suggest that novel techniques provide useful follow‐up parameters in paranodopathies.
Proteasome inhibition with bortezomib has been reported to exert an immunomodulatory action in chronic autoimmune neuropathies. However, bortezomib used for the treatment of multiple myeloma induces a painful toxic polyneuropathy at a higher concentration. Therefore, we addressed this controversial effect and evaluated the neurotoxic and immunomodulatory mode of action of bortezomib in experimental autoimmune neuritis. Bortezomib-induced neuropathy was investigated in Lewis rats using the von Frey-Hair test, electrophysiological, qPCR, and histological analyses of the sciatic nerve as well as dorsal root ganglia outgrowth studies. The immunomodulatory potential of bortezomib was characterized in Lewis rats after experimental autoimmune neuritis induction with P253-78 peptide. Clinical, electrophysiological, histological evaluation, von Frey-Hair test, flow cytometric, and mRNA analyses were used to unravel the underlying mechanisms. We defined the toxic concentration of 0.2 mg/kg bortezomib applied intraperitoneally at days 0, 4, 8, and 12. This dosage induces a painful toxic neuropathy but preserves axonal regeneration in vitro. Bortezomib at a concentration of 0.05 mg/kg significantly ameliorated experimental autoimmune neuritis symptoms, improved experimental autoimmune neuritis-induced hyperalgesia and nerve conduction studies, and reduced immune cell infiltration. Furthermore, proteasome inhibition induced a transcriptional downregulation of Nfkb in the sciatic nerve, while its inhibitor Ikba (also known as Nfkbia) was upregulated. Histological analyses of bone marrow tissue revealed a compensatory increase of CD138+ plasma cells. Our data suggest that low dose bortezomib (0.05 mg/kg intraperitoneally) has an immunomodulatory effect in the context of experimental autoimmune neuritis through proteasome inhibition and downregulation of NFKB. Higher bortezomib concentrations (0.2 mg/kg intraperitoneally) induce sensory neuropathy; however, the regeneration potential remains unaffected. Our data empathizes, that bortezomib may serve as an attractive treatment option for inflammatory neuropathies in lower concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.