Non-traumatic Vertebral Compression Fractures (VCFs) are generally caused by osteoporosis (benign VCFs) or metastatic cancer (malignant VCFs) and the success of the medical treatment strongly depends on a fast and correct classification of VCFs. Recently, methods for computer-aided diagnosis (CAD) based on machine learning have been proposed for classifying VCFs. In this work, we investigate the problem of clustering images of VCFs and the impact of feature selection by genetic algorithms, comparing the clustering i)with all features and ii)with feature selection through the purity results. The analysis of the clusters helps to understand the results of classifiers and difficulties of differentiating images of different classes by an expert. The results indicate that features selection improved the separability of clusters and purity. Feature selection also helps to understand which attributes are most important for analysing the images of vertebral bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.