An innovative approach based on the combination of analytical pyrolysis coupled with gas chromatography-mass spectrometry (Py-GC/MS) with compound-specific isotope analysis (Py-CSIA) is used to study the composting process of maize biomass. This multidisciplinary approach aims to elucidate the decomposition rate of the main biogenic materials (lignin, cellulose, proteins, lipids, and waxes) responses to the composting process. According to Py-GC/MS data/structural composition, a noticeable and significant decrease during the first stage of the composting process of carbohydrates and aromatic compounds is found, followed by a gradual increase of all compounds till the end of the experiment. This trend, along with an increase of fatty acids methyl-ester at the first composting stage, sustains the microbial activity and its stabilization over time. Py-CSIA data showed a significant enrichment in 13C in all identified compounds over time, supporting the semi-quantitative results and the decomposition of initial biomass throughout the composting process. This trend is also perceptible in lignin moieties, long-chain aliphatic structures, and isoprenoids, as highly recalcitrant compounds, presumably due to depolymerization and carbon translocation of side-chain molecules during the composting process. Compound-specific isotope values showed a good correlation with the bulk isotope data, and this served as validation of the technique. However, bulk values showed higher heterogeneity because those represent an average of all organic compounds in the sample. By combining isotopic and structural information using Py-GC/MS and Py-CSIA, we are able to provide further information and a more detailed approach to the study of the decomposition process of biomass by considering the diverse dynamics of the main biogenic compounds.
The determination of heavy metals in soils and organic amendments, such as compost, manure, biofertilizer, and sludge, generally involves the digestion of samples with aqua regia, and the determination of those in the solution using various techniques. Portable X-ray fluorescence (PXRF) has many advantages in relation to traditional analytical techniques. However, PXRF determines the total elemental content and, until now, its use for the analysis of organic amendments has been limited. The objective of this work is the calibration of a PXRF instrument to determine the aqua regia-soluble elemental contents directly in solid samples of organic amendments. Our proposal will avoid the digestion step and the use of other laboratory techniques. Using a training set of samples, calibration functions were obtained that allow the determination of the aqua regia-soluble contents from the PXRF readings of total contents. The calibration functions (obtained by multiple linear regression) allowed the quantitative determination of the aqua regia-soluble contents of Fe, K, P, S, Zn, Cu, Pb, Sr, Cr, and Mn, as well as the organic matter content and a semi-quantitative assessment of Al, Ca, V, Ba, Ni, and As contents. The readings of Si, Fe, Al, Ca, K, or S were used as correction factors, indicating that the calibrations functions found are truly based on the chemical composition of the sample matrix. This study will allow a fast, cheap, and reliable field analysis of organic amendments and of other biomass-based materials.
Peat moss is the most used soilless substrate in the production of container plants in floriculture. Nevertheless, the drainage of peat bogs due to the peat extraction has increased the necessity of seeking products that could replace the peat that is used in plant production. Therefore, a comparative study was conducted to evaluate the effect of a biochar (B)-vermicompost (V) mixture, as a partial substitute for peat-based substrates, on the morpho-physiological characteristics of ornamental plants. Different blends containing B and V were compared to a baseline peat-based substrate (S) as control in the cultivation of two ornamental bedding plant species that are widely used in urban areas: geranium (Pelargonium peltatum) and petunia (Petunia hybrida). Plant growth and physiological parameters were assessed. Results showed that it is possible to grow container plants of these two species with commercial quality, using a peat-based substrate mixed with biochar and/or vermicompost (up to 30% V and 12% B). Plants in these substrates showed a similar or enhanced physiological response to those grown in the control using commercial peat-based substrate.
Portable X-ray fluorescence (pXRF) has been a widely used technique in various applications. However, its use for the analysis of organic amendments (composts, sewage sludges, organic fertilizers) is scarce. In these matrices, concentrations of some elements are below their detection limit. The objective of this work was to find multiple linear regression equations that were able to predict the aqua-regia-soluble concentrations of the elements As, Cd, Cr, Hg, Ni, and Se using the pXRF readings of other measurable elements as predictor variables. For this, a set of 30 samples of organic amendments (composts, sewage sludges, and organic fertilizers) from the Manure and Refuse Sample Exchange Programme of the Wageningen Evaluating Programs for Analytical Laboratories (MARSEP-WEPAL) was used. Several amendment type-dependent single or multiple linear functions were found based on 1, 2, or 3 predictors. The predictor readings corresponded to the concentration of elements of geogenic (Fe, Si, Ti, Cl, Zr Al, Ca, S, Mn, and Ba), anthropogenic (Zn and Pb), and agricultural (P and K) origin. The regression coefficients of these functions were r = 0.90–0.99; therefore, they allowed for the quantitative determination of the target elements. These results will allow for fast and reliable analysis of organic amendments using pXRF that is valid for quality control in treatment plants.
Portable XRF spectrometry (pXRF) has recently undergone significant technological improvements and is being applied in a wide range of studies. Despite pXRF advantages, this technique has rarely been used to characterize organic amendments and residues. This article reviews those studies undertaken to date in which pXRF is used to characterize these products. Published studies show that pXRF correctly measures elements such as Fe, Pb, Zn, Mn, Ca, and K but gives conflicting results for elements such as Cr, Ni, and As. Among the reasons that may cause the low performance of the technique with certain elements or under certain measurement conditions would be the inadequacy of the analytical comparison procedures used (i.e., digestion with aqua regia), the lack of knowledge of the interfering effects of organic matter, and sample moisture on the XRF signals and the need for a standardized protocol for performing the measurements. However, the speed and low cost of the procedure forecast a greater future use of this technique, especially in cooperation with other fast spectroscopic techniques based on near-infrared (NIRS) or mid-infrared (MIR) spectroscopies. Chemometric procedures based on one or more of these techniques will allow the prediction of elements below the detection limit of pXRF instruments (Cd, Hg), or other properties of organic amendments (organic matter, N, electrical conductivity, cation exchange capacity).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.