Increasingly tighter regulations regarding organic waste, and the demand for renewable chemicals and fuels, are pushing the manufacturing industry toward higher sustainability to improve cost-effectiveness and meet customers' demand. Food waste valorization is one of the current research areas that has attracted a great deal of attention over the past few years as a potential alternative to the disposal of a wide range of residues in landfill sites. In particular, the development of environmentally sound and innovative strategies to process such waste is an area of increasing importance in our current society. Landfill, incineration and composting are common, mature technologies for waste disposal. However, they are not satisfactory to treating organic waste due to the generation of toxic methane gas and bad odor, high energy consumption and slow reaction kinetics. In fact, research efforts have also been oriented on novel technologies to decompose organic waste. However, no valuable product is generated from the decomposition process. Instead of disposing and decomposing food waste, recent research has focused on its utilization as energy source (e.g., for bioethanol and biodiesel production). Organic waste is also useful to generate useful organic chemicals via biorefinery or white biotechnology (e.g., succinic acid and/or bio-plastics). This article is aimed to summarize recent development of waste valorization strategies for the sustainable production of chemicals, materials, and fuels through the development of green production strategies. It will also provide key insights into recent legislation on management of waste worldwide as well as two relevant case studies (the transformation of corncob residues into functionalized biomass-derived carbonaceous solid acids and their utilization in the production of biodiesel-like biofuels from waste oils in Philippines, as well as the development of a bakery waste based biorefinery for succinic acid and bioplastic production in Hong Kong) to illustrate the enormous potential of biowaste valorization for a more sustainable society. Future research directions and possible sustainable approaches will also be discussed with their respective proofs of concept.
In the population under study, severity of illness at admission, the development of sepsis and the total dose of corticosteroids are factors associated with the occurrence of myopathy after the administration of corticosteroids. Myopathy was associated with prolonged mechanical ventilation and in-hospital stay.
Glycerol conversion to valuable products has been a research avenue that attracted a significant interest in recent years due to its large available volumes (as by-product of biodiesel production) and the different possibilities for chemical and biological conversion into high added value chemicals profiting from the unique presence of three hydroxyl groups in its structure. The utilization of continuous flow processes in combination with transformation of platform chemicals (e.g. glycerol) can offer several advantages to batch processes in view of their potential implementation in industry. This minireview has been aimed to highlight most recent key continuous flow systems for glycerol valorization to valuable products using different types of catalysts and processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.