Detecting light at the single-photon level is one of the pillars of emergent photonic technologies. This is realized through state-of-the-art superconducting detectors that offer efficient, broadband and fast response. However, the use of low TC superconducting thin films limits their operation temperature below 4 K. Here, we demonstrate proof-of-concept nanodetectors based on exfoliated, two-dimensional cuprate superconductor Bi2Sr2CaCu2O8-δ that exhibit single-photon sensitivity at telecom wavelength at a record temperature of T = 20 K. These non-optimized devices exhibit a slow (~ ms) reset time and a low detection efficiency (~ 10^(-4)). We realize the elusive prospect of single-photon sensitivity on a high-TC nanodetector thanks to a novel approach, combining van der Waals fabrication techniques and a non-invasive nanopatterning based on light ion irradiation. This result paves the way for broader application of single-photon technologies, relaxing the cryogenic constraints for single-photon detection at telecom wavelength.
Photodetectors based on nano-structured superconducting thin films are currently some of the most sensitive quantum sensors and are key enabling technologies in such broad areas as quantum information, quantum computation and radio-astronomy. However, their broader use is held back by the low operation temperatures which require expensive cryostats. Here, we demonstrate a high-T c superconducting photodetector, which shows orders of magnitude improved performance characteristics of any superconducting detector operated above 77 K, with a responsivity of 9.61 × 104 V W−1, theoretically achievable noise equivalent power of 15.9 fW Hz1/2 and nanosecond relaxation times. At 15 K the detector reaches an ultra-high performance of 2.33 × 107 V W−1 and 55.2 aW Hz1/2. It is based on van der Waals heterostructures of the high temperature superconductor Bi2Sr2CaCu2O8+δ , which are shaped into nano-wires with ultra-small form factor using focused helium ion beam irradiation. To highlight the versatility of the detector we demonstrate its fabrication and operation on a telecom grade SiN waveguide chip. Our detector significantly relaxes the demands of practical applications of superconducting detectors and displays its possible potential for photonics based quantum applications.
Carrier relaxation measurements in moiré materials offer a unique probe of the microscopic interactions, in particular the ones that are not easily measured by transport. Umklapp scattering between phonons is a ubiquitous momentum-nonconserving process that governs the thermal conductivity of semiconductors and insulators. In contrast, Umklapp scattering between electrons and phonons has not been demonstrated experimentally. Here, we study the cooling of hot electrons in moiré graphene using time-and frequency-resolved photovoltage measurements as a direct probe of its complex energy pathways including electron-phonon coupling. We report on a dramatic speedup in hot carrier cooling of twisted bilayer graphene near the magic angle: the cooling time is a few picoseconds from room temperature down to 5 K, whereas in pristine graphene coupling to acoustic phonons takes nanoseconds. Our analysis indicates that this ultrafast cooling is a combined effect of the formation of a superlattice with low-energy moiré phonons, spatially compressed electronic Wannier orbitals, and a reduced superlattice Brillouin zone, enabling Umklapp scattering that overcomes electron-phonon momentum mismatch. These results demonstrate a way to engineer electron-phonon coupling in twistronic systems, an approach that could contribute to the fundamental understanding of their transport properties and enable applications in thermal management and ultrafast photodetection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.