T he algorithm described here, called OptQuest/NLP or OQNLP, is a heuristic designed to find global optima for pure and mixed integer nonlinear problems with many constraints and variables, where all problem functions are differentiable with respect to the continuous variables. It uses OptQuest, a commercial implementation of scatter search developed by OptTek Systems, Inc., to provide starting points for any gradient-based local solver for nonlinear programming (NLP) problems. This solver seeks a local solution from a subset of these points, holding discrete variables fixed. The procedure is motivated by our desire to combine the superior accuracy and feasibility-seeking behavior of gradient-based local NLP solvers with the global optimization abilities of OptQuest. Computational results include 155 smooth NLP and mixed integer nonlinear program (MINLP) problems due to Floudas et al. (1999), most with both linear and nonlinear constraints, coded in the GAMS modeling language. Some are quite large for global optimization, with over 100 variables and 100 constraints. Global solutions to almost all problems are found in a small number of local solver calls, often one or two.
Scatter search is a population-based method that has recently been shown to yield promising outcomes for solving combinatorial and nonlinear optimization problems. Based on formulations originally proposed in the 1960s for combining decision rules and problem constraints such as the surrogate constraint method, scatter search uses strategies for combining solution vectors that have proved effective in a variety of problem settings. In this paper, we develop a general purpose heuristic for a class of nonlinear optimization problems. The procedure is based on the scatter search methodology and treats the objective function evaluation as a black box, making the search algorithm context-independent.Most optimization problems in the chemical and bio-chemical industries are highly nonlinear in either the objective function or the constraints. Moreover, they usually present differential-algebraic systems of constraints. In this type of problem, the evaluation of a solution or even the feasibility test of a set of values for the decision variables is a time-consuming operation. In this context, the solution method is limited to a reduced number of solution examinations. We have implemented a scatter search procedure in Matlab for this special class of difficult optimization problems. Our development goes beyond a simple exercise of applying scatter search to this class of problem, but presents innovative mechanisms to obtain a good balance between intensification and diversification in a short-term search horizon. Computational comparisons with other recent methods over a set of benchmark problems favor the proposed procedure.
Scatter search is an evolutionary method that has been successfully applied to hard optimization problems. The fundamental concepts and principles of the method were first proposed in the 1970s, based on formulations dating back to the 1960s for combining decision rules and problem constraints. In contrast to other evolutionary methods like genetic algorithms, scatter search is founded on the premise that systematic designs and methods for creating new solutions afford significant benefits beyond those derived from recourse to randomization. It uses strategies for search diversification and intensification that have proved effective in a variety of optimization problems.This paper provides the main principles and ideas of scatter search and its generalized form path relinking. We first describe a basic design to give the reader the tools to create relatively simple implementations. More advanced designs derive from the fact that scatter search and path relinking are also intimately related to the tabu search (TS) metaheuristic, and gain additional advantage by making use of TS adaptive memory and associated memory-exploiting mechanisms capable of being tailored to particular contexts. These and other advanced processes described in the paper facilitate the creation of sophisticated implementations for hard problems that often arise in practical settings. Due to their flexibility and proven effectiveness, scatter search and path relinking can be successfully adapted to tackle optimization problems spanning a wide range of applications and a diverse collection of structures, as shown in the papers of this volume.
T he algorithm described here, called OptQuest/NLP or OQNLP, is a heuristic designed to find global optima for pure and mixed integer nonlinear problems with many constraints and variables, where all problem functions are differentiable with respect to the continuous variables. It uses OptQuest, a commercial implementation of scatter search developed by OptTek Systems, Inc., to provide starting points for any gradient-based local solver for nonlinear programming (NLP) problems. This solver seeks a local solution from a subset of these points, holding discrete variables fixed. The procedure is motivated by our desire to combine the superior accuracy and feasibility-seeking behavior of gradient-based local NLP solvers with the global optimization abilities of OptQuest. Computational results include 155 smooth NLP and mixed integer nonlinear program (MINLP) problems due to Floudas et al. (1999), most with both linear and nonlinear constraints, coded in the GAMS modeling language. Some are quite large for global optimization, with over 100 variables and 100 constraints. Global solutions to almost all problems are found in a small number of local solver calls, often one or two.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.