OBJECTIVE The objective of our study was to evaluate the effect of varying arterial input function (AIF) placement on the qualitative and quantitative CT perfusion parameters. MATERIALS AND METHODS Retrospective analysis of CT perfusion data was performed on 14 acute stroke patients with a proximal middle cerebral artery (MCA) clot. Cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were constructed using a systematic method by varying only the AIF placement in four positions relative to the MCA clot including proximal and distal to the clot in the ipsilateral and contralateral hemispheres. Two postprocessing software programs were used to evaluate the effect of AIF placement on perfusion parameters using a delay-insensitive deconvolution method compared with a standard deconvolution method. RESULTS One hundred sixty-eight CT perfusion maps were constructed for each software package. Both software programs generated a mean CBF at the infarct core of < 12 mL/100 g/min and a mean CBV of < 2 mL/100 g for AIF placement proximal to the clot in the ipsilateral hemisphere and proximal and distal to the clot in the contralateral hemisphere. For AIF placement distal to the clot in the ipsilateral hemisphere, the mean CBF significantly increased to 17.3 mL/100 g/min with delay-insensitive software and to 19.4 mL/100 g/min with standard software (p < 0.05). The mean MTT was significantly decreased for this AIF position. Furthermore, this AIF position yielded qualitatively different parametric maps, being most pronounced with MTT and CBF. Overall, CBV was least affected by AIF location. CONCLUSION For postprocessing of accurate quantitative CT perfusion maps, laterality of the AIF location is less important than avoiding AIF placement distal to the clot as detected on CT angiography. This pitfall is less severe with deconvolution-based software programs using a delay-insensitive technique than with those using a standard deconvolution method.
Neurocysticercosis (NCC) is the most common helminthic infection of the central nervous system, but its diagnosis remains difficult. The purpose of this article is to perform a critical analysis of the literature and show our experience in the evaluation of NCC. We discuss the advanced MR technique applications such as diffusion and perfusion-weighted imaging, spectroscopy, cisternography with FLAIR, and supplemental O2 and 3D-CISS. The typical manifestations of NCC are described; emphasis is given to the unusual presentations. The atypical forms of neurocysticercosis were divided into: intraventricular, subarachnoid, spinal, orbital, and intraparenchymatous. Special attention was also given to reactivation of previously calcified lesions and neurocysticercosis associated with mesial temporal sclerosis.
In 2002, the term congenital cranial dysinnervation disorders (CCDDs) was proposed to group heterogeneous syndromes with congenital abnormalities of ocular muscle and facial innervations. The concept of neurogenic etiology has been supported by discovery of genes that are essential to the normal development of brainstem, cranial nerves, and their axonal connections. The CCDDs include Duane retraction syndrome, congenital fibrosis of the extraocular muscles, Möbius syndrome, horizontal gaze palsy with progressive scoliosis, the human homeobox-related disorders, pontine cap tegmental dysplasia, and an expanding list. The purpose of this review was to update the imaging features, as well as clinical and genetic information, regarding cases of CCDDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.