We describe a novel approach for optically detecting DNA translocation events through an array of solid-state nanopores that potentially allows for ultra high-throughput, parallel detection at the single-molecule level. The approach functions by electrokinetically driving DNA strands through sub micrometer-sized holes on an aluminum/silicon nitride membrane. During the translocation process, the molecules are confined to the walls of the nanofluidic channels, allowing 100% detection efficiency. Importantly, the opaque aluminum layer acts as an optical barrier between the illuminated region and the analyte reservoir. In these conditions, high-contrast imaging of single-molecule events can be performed. To demonstrate the efficiency of the approach, a 10 pM fluorescently labeled lambda-DNA solution was used as a model system to detect simultaneous translocation events using electron multiplying CCD imaging. Single-pore translocation events are also successfully detected using single-point confocal spectroscopy.
The separation of biomolecules and other nanoparticles is a vital step in several analytical and diagnostic techniques. Towards this end we present a solid state nanopore-based set-up as an efficient separation platform. The translocation of charged particles through a nanopore was first modeled mathematically using the multi-ion model and the surface charge density of the nanopore membrane was identified as a critical parameter that determines the selectivity of the membrane and the throughput of the separation process. Drawing from these simulations a single 150 nm pore was fabricated in a 50 nm thick free-standing silicon nitride membrane by focused-ion-beam milling and was chemically modified with (3-aminopropyl)triethoxysilane to change its surface charge density. This chemically modified membrane was then used to separate 22 and 58 nm polystyrene nanoparticles in solution. Once optimized, this approach can readily be scaled up to nanopore arrays which would function as a key component of next-generation nanosieving systems.
W ith over a decade passed since the first reported use of a Staphylococcal a-hemolysin pore to study single molecules of single-stranded DNA, research in the field of nanopores has advanced rapidly. We discuss the technological progression of nanopore-based devices from the initial use of a-hemolysin pores to the advent of solid-state nanopores to the burgeoning of organice inorganic hybrid pores driven by the desire to achieve fast and inexpensive DNA sequencing. Additional nanoporebased efforts are also discussed that study other classes of molecules, such as proteins. We discuss the use of nanopores for protein folding and binding analysis. In addition to single-molecule analysis, we report on the introduction of nanopore arrays on thin film membranes for ultrafiltration. Owing to their reduced spatial dimensionality, such membranes offer greater control over how the pores interact with analytes thus leading to very efficient separation. With several technical hindrances yet to be overcome, the devices we report are still works in progress. The realization of these devices will enhance laboratory processes by permitting superior spatial and temporal analytical resolution at the single-molecule level resulting in laboratory capacities of great impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.