We consider a schematic human eye with four centered aspheric surfaces. We show that by introducing recent experimental average measurements of cornea and lens into the Gullstrand-Le Grand model, the average spherical aberration of the actual eye is predicted without any shape fitting. The chromatic dispersions are adjusted to fit the experimentally observed chromatic aberration of the eye. The polychromatic point-spread function and modulation transfer function are calculated for several pupil diameters and show good agreement with previous experimental results. Finally, from this schematic eye an accommodation-dependent model is proposed that reproduces the increment of refractive power of the eye during accommodation. The variation of asphericity with accommodation is also introduced in the model and the resulting optical performance studied.
We study the dynamics of small vortex clusters with few (2-4) co-rotating vortices in Bose-Einstein condensates by means of experiments, numerical computations, and theoretical analysis. All of these approaches corroborate the counter-intuitive presence of a dynamical instability of symmetric vortex configurations. The instability arises as a pitchfork bifurcation at sufficiently large values of the angular momentum that induces the emergence and stabilization of asymmetric rotating vortex configurations. The latter are quantified in the theoretical model and observed in the experiments. The dynamics is explored both for the integrable two-vortex system, where a reduction of the phase space of the system provides valuable insight, as well as for the non-integrable three-(or more) vortex case, which additionally admits the possibility of chaotic trajectories.
A schematic eye model based on anatomical data, which had been previously designed to reproduce image quality on axis, has been transformed into a wide-angle model by simply adding a spherical image surface that plays the role of the retina. This model captures the main features of the wide-angle optical design of the human eye with minimum complexity: four conic optical surfaces plus a spherical image surface. Seidel aberrations (spherical aberration, coma, astigmatism, field curvature, and distortion), longitudinal and transverse chromatic aberrations, and overall monochromatic spot diagrams have been computed for this eye model and for field angles ranging from 0 degree to 60 degrees by both finite and third-order ray tracing. The modulation transfer function for each field angle has been computed as well. In each case our results have been compared with average experimental data found in the literature, showing a reasonably good agreement. The agreement between the model and experimental data is better off axis, mainly at moderate (10 degrees-40 degrees) field angles, than on axis. The model has been applied to simulate a variety of experimental methods in which image aberrations are estimated from measurements taken in the object space. Our results suggest that for some types of aberration, these methods may yield biased estimates.
The depth-of-field (DOF) measured through psychophysical methods seems to depend on the target's characteristics. We use objective and subjective methods to determine the DOF of the eye for different pupil diameters and wavelengths in three subjects. Variation of image quality with focus is evaluated with a double-pass technique. Objective DOF is defined as the dioptric range for which the image quality does not change appreciably, based on optical criteria. Subjective DOF is based on the accuracy of focusing a point source. Additional DOFs are obtained by simulation from experimental wavefront aberration data from the same subjects. Objective and subjective measurements of DOF are only slightly affected by pupil size, wavelength and spectral composition. Comparison of DOF from double-pass and wavefront aberration data allows us to evaluate the role of ocular aberrations and Stiles-Crawford effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.