Over-expression of sirtuins (NAD+-dependent protein deacetylases) has been reported to increase lifespan in budding yeast, Caenorhabditis elegans and Drosophila melanogaster1-3. Studies of gene effects on ageing are vulnerable to confounding effects of genetic background4. We re-examined the reported effects of sirtuin over-expression on ageing and found that standardisation of genetic background and use of appropriate controls abolished the apparent effects in both C. elegans and Drosophila. In C. elegans, outcrossing of a line with high level sir-2.1 over-expression1 abrogated the longevity increase, but not sir-2.1 over-expression. Instead, longevity co-segregated with a second-site mutation affecting sensory neurons. Outcrossing of a line with low copy number sir-2.1 over-expression2 also abrogated longevity. A Drosophila strain with ubiquitous over-expression of dSir2 using the UAS-GAL4 system was long-lived relative to wild-type controls, as previously reported3, but not relative to the appropriate transgenic controls, and nor was a new line with stronger over-expression of dSir2. These findings underscore the importance of controlling for genetic background and the mutagenic effects of transgene insertions in studies of genetic effects on lifespan. The life extending effect of dietary restriction (DR) on ageing in Drosophila has also been reported to be dSir2 dependent3. We found that DR increased fly lifespan independently of dSir2. Our findings do not rule out a role for sirtuins in determination of metazoan lifespan, but they do cast doubt on the robustness of the previously reported effects on lifespan in C. elegans and Drosophila.
One of the current challenges of neurodegenerative disease research is to determine whether signaling pathways that are essential to cellular homeostasis might contribute to neuronal survival and modulate the pathogenic process in human disease. In C. elegans, sir-2.1/SIRT1 overexpression protects neurons from the early phases of expanded polyglutamine (polyQ) toxicity, and this protection requires the lonfity-promoting factor daf-16/FOXO. Here, we show this neuroprotective effect also requires the DAF-16/FOXO partner bar-1/β-catenin and putative DAF-16 regulated gene, ucp-4, the sole mitochondrial uncoupling protein (UCP) in nematodes. These results fit with a previously-proposed mechanism in which the β-catenin, FOXO and SIRT1 proteins may together regulate gene expression and cell survival. Knockdown of β-catenin enhanced the vulnerability to cell death of mutant-huntingtin striatal cells derived from the HdhQ111 knock-in mice. In addition, this effect was compensated by SIRT1 overexpression and accompanied by the modulation of neuronal UCP expression levels, further highlighting a cross-talk between β-catenin and SIRT1 in the modulation of mutant polyQ cytoxicity. Taken together, these results suggest that integration of β-catenin, sirtuin and FOXO signaling protects from the early phases of mutant huntingtin toxicity.
A study of Huntington's disease reveals that neurons might fail to cope with maintaining their function during the pre-symptomatic, pathogenic phases of HD, possibly due to the early repression of key longevity-promoting transcription factors by abnormal developmental signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.