Chagas disease, a neglected tropical disease (NTD) caused by the flagellated protozoan Trypanosoma cruzi (T. cruzi), is a major public health problem. It was initially restricted to Latin America, but it is now expanding globally. Host and pathogen interactions are crucial in the establishment of disease, and since 1970, it has been known that eukaryotic cells release extracellular vesicles (EVs), which in turn have an important role in intercellular communication in physiological and pathological conditions. Our study proposed to characterize and compare circulating EVs isolated from the plasma of chronic Chagas disease (CCD) patients and controls. For this, peripheral blood was collected from patients and controls, and mononuclear cells (PBMCs) were isolated and stimulated with parasite EVs, showing that patient cells released fewer EVs than control cells. Then, after plasma separation followed by EV total shedding enrichment, the samples were subjected to ultracentrifugation to isolate the circulating EVs, which then had their size and concentration characterized by nanoparticle tracking analysis (NTA). This showed that patients had a lower concentration of circulating EVs while there were no differences in size, corroborating the in vitro data. Additionally, circulating EVs were incubated with THP-1 cells (macrophages) that, after the interaction, had their supernatant analyzed by ELISA for cytokine detection. In relation to their ability to induce cytokine production, the CCD patient EVs were able to induce a differential production of IFN-γ and IL-17 in relation to controls, with differences being more evident in earlier/less severe stages of the disease. In summary, a decreased concentration of circulating EVs associated with differential activation of the immunological system in patients with CCD is related to parasite persistence and the establishment of chronic disease. It is also a potential biomarker for monitoring disease progression.
Extracellular vesicles (EVs) are lipid bilayer envelopes that encase several types of molecules. Their contents mostly reflect their cell origin and possible targets at other locations in the organism and can be modified in pathological conditions to interfere with intercellular communication, thus promoting disease establishment and development. These characteristics, in addition to their presence in virtually all body fluids, make such vesicles ideal for biomarker discovery in human diseases.Here, we describe the effect of different anticoagulants and the combination of two purification methods for isolation and characterization of circulating EVs from blood of chronic Chagas disease (CCD) patients. We illustrated this procedure by studying a population of patients with Chagas disease at the indeterminate chronic stage, in which the Trypanosoma cruzi is very scarce in circulation. EVs were harvested from blood collected without or with different anticoagulants. Protein and nanoparticle tracking analysis was used to measure EVs size and concentration. The EVs were purified by ultracentrifugation, followed by size-exclusion chromatography and characterized by chemiluminescent enzyme-linked immunosorbent assay and dot blot using antibodies that recognized parasite-derived EVs, such as hyperimmune sera, polyclonal and monoclonal antibodies against trans-sialidase and mucins. In parallel, antibodies against classical human EV markers CD9, CD63, CD81, and CD82, were also analyzed. The results showed that anticoagulants did not interfere with the analyzed parameters and circulating EVs from CCD patients contain T. cruzi
Ergosterol biosynthesis inhibitors, such as posaconazole and ravuconazole, have been proposed as drug candidates for Chagas disease, a neglected infectious tropical disease caused by the protozoan parasite Trypanosoma cruzi. To understand better the mechanism of action and resistance to these inhibitors, a clone of the T. cruzi Y strain was cultured under intermittent and increasing concentrations of ravuconazole until phenotypic stability was achieved. The ravuconazole-selected clone exhibited loss in fitness in vitro when compared to the wild-type parental clone, as observed in reduced invasion capacity and slowed population growth in both mammalian and insect stages of the parasite. In drug activity assays, the resistant clone was above 300-fold more tolerant to ravuconazole than the sensitive parental clone, when the half-maximum effective concentration (EC 50 ) was considered. The resistant clones also showed reduced virulence in vivo , when compared to parental sensitive clones. Cross-resistance to posaconazole and other CYP51 inhibitors, but not to other antichagasic drugs that act independently of CYP51, such as benznidazole and nifurtimox, was also observed. A novel amino acid residue change, T297M, was found in the TcCYP51 gene in the resistant but not in the sensitive clones. The structural effects of the T297M, and of the previously described P355S residue changes, were modelled to understand their impact on interaction with CYP51 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.