The provision of carbon substrates and reducing power for fatty acid synthesis in the heterotrophic plastids of developing embryos of sunflower (Helianthus annuus L.) has been investigated. Profiles of oil and storage protein accumulation were determined and embryos at 17 and 24 days after anthesis (DAA) were selected to represent early and late periods of oil accumulation. Plastids isolated from either 17 or 24 DAA embryos did not incorporate label from [1-(14)C]glucose 6-phosphate (Glc6P) into fatty acids. Malate, when supplied alone, supported the highest rates of fatty acid synthesis by the isolated plastids at both stages. Pyruvate supported rates of fatty acid synthesis at 17 DAA that were comparable to those supported by malate, but only when incubations also included Glc6P. The stimulatory effect of Glc6P on pyruvate utilization at 17 DAA was related to the rapid utilization of Glc6P through the oxidative pentose phosphate pathway (OPPP) at this stage. Addition of pyruvate to incubations containing [1-(14)C]Glc6P increased OPPP activity (measured as (14)CO(2) release), while the addition of malate suppressed it. Observations of the interactions between the rate of metabolite utilization for fatty acid synthesis and the rate of the OPPP are consistent with regulation of the OPPP by redox control of the plastidial glucose 6-phosphate dehydrogenase activity through the demand for NADPH. During pyruvate utilization for fatty acid synthesis, flux through the OPPP increases as NADPH is consumed, whereas during malate utilization, in which NADPH is produced by NADP-malic enzyme, flux through the OPPP is decreased.
We have performed an "in vivo" study of storage lipid synthesis in developing sunflower seeds, from several high-oleic genetic backgrounds, using radioactive acetate in conjunction with methyl viologen as an inhibitor of the stearoyl-ACP desaturase. As such, some backgrounds showed stronger acyl-ACP thioesterase activity on stearoyl-ACP. We have developed a saturation coefficient that quantifies stearoyl-ACP thioesterase activity among sunflower lines based on their ability to synthesize saturated fatty acids under conditions when the competing stearoyl-ACP desaturase is inhibited by methyl viologen. The saturation coefficient is defined as the ratio of sum of the stearic, araquidic, and behenic saturated fatty acid contents to the unsaturated fatty acid content. On the basis of this coefficient, we were able to select high-oleic lines that, when crossed with the high-stearic CAS-3 line, developed progeny with high-stearic content on a high-oleic background. This approach has enabled us to identify lines with a combination of alleles that synthesized oils with more stearic acid in a high-oleic background, 21% stearic and 62% oleic contents. In contrast, lines with a lower index produced progeny that contained less stearic acid, similar to those obtained previously, that were 13% stearic acid content in high-oleic background. This method could also be used for other metabolic pathways where the blockage of a principal pathway may activate a secondary pathway. However, it should be emphasized that although the stearic acid content could be augmented it was not possible to break the association or the epistatic relationship that exists between the genes that permit a high-stearic phenotype and those that determine a high-oleic background.
It is well known that fatty acid biosynthesis in leaves is closely related to photosynthesis; although a residual synthesis is also detected at night. But less known is the effect of the day–night cycle in fatty acid biosynthesis in heterotrophic tissues such as developing seeds. Through the use of radioactive precursors, we detected variations in the metabolism of fatty acids and lipids during the day–night period in sunflower (Helianthus annuus L.) seeds. These oscillations have been observed both in the fatty acids bound to triacylglycerols and in polar lipids, indicating a fine regulation of the lipids biosynthetic activities in sunflower developing seeds. Additionally, in the triacylglycerol fraction, periodic variations were observed in the oleic and linoleic acids content as a consequence of qualitative variations in the biosynthetic machinery during the day–night period related to temperature changes. Analyzing the rate of oleic acid desaturation, we observed a significant increase in activity in the middle of the night, indicative of the importance of nocturnal desaturation. Similar variations were also observed in the stearoyl‐acyl carrier protein (ACP) desaturase activity. This study has shown the variation in the lipid biosynthetic capacity in sunflower developing seeds during the day–night cycle—including control over individual enzymes such as the stearoyl‐ACP desaturase—and the influence of diurnal and nocturnal temperatures in the quality (oleic/linoleic ratio) of the oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.