In industrial bioprocess control, disturbance sources typically influences process variable regulation. These disturbances may reduce a system control performance or even affect the final bioproduct quality. Therefore, feedforward control is desired because it anticipates the effects caused by these disturbances in an attempt to keep the process variable at the setpoint value. However, designing a feedforward control law requires process modeling, which can be a tough task when dealing with bioprocesses that are intrinsically nonlinear and multivariable systems. Thus, an adaptive feedforward control law or other advanced control system is needed for satisfactory disturbance rejection. For this reason, a general fuzzy feedforward control system is proposed in this paper to replace the classical feedforward control, making it easier to implement the feedforward control action by avoiding nonlinear and multivariable process modeling. The adaptive fuzzy feedforward-feedback (A4FB) system was applied to a product concentration control loop in an enzymatic reactor, to reject disturbances caused by variations in the substrate and enzymatic solutions feed concentration. The results showed that the A4FB controller rejected much more disturbance effects than classical feedforward control law, demonstrating its advantage, supported by not only its simple implementation, but also its improved disturbance rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.