An extension of the Oberbeck-Boussinesq approximation (OB) with expressive thermal effects is investigated to model specific mass with a temperature-dependent approach. An expansion of OB is proposed using a mathematical formulation with null velocity divergence in the continuity equation and variable specific mass in the momentum and energy equations (NOB). The NOB method has been previously tested in the literature, and the present paper aims to carry out a quantitative analysis between NOB and OB. The specific mass is calculated based on the temperature field and a divergence-free velocity is imposed on the NOB due to the small effects of variations of the specific mass in the continuity equation, as previously demonstrated by the OB. The purpose of the NOB is to overcome the OB's restriction to single-phase flows, as well as to model the effects of specific mass variations more accurately, especially in problems with prominent thermal transfer effects, as that occur in the turbulent regime. Since the effects of a variable specific mass in the momentum and energy equations were taken into account by the NOB, it was expected that the thermal transfer results of the NOB would be improved compared with those of the OB. Then, three-dimensional natural convection simulations for a large range of Rayleigh numbers were performed using OB and NOB in a cubic cavity. Turbulence modeling was performed using Large Eddy Simulation (LES). Numerical results from both approaches were validated and all the results presented good quality. Thermal transfer was evaluated by the calculation of the Nusselt number at the heated wall and compared to experimental data from the literature. The OB and NOB provided adequate thermal transfer rate results; however, the differences between the literature and OB were higher than for NOB. Therefore, NOB is presented as a useful mathematical formulation for modeling incompressible flows with a temperature-dependent specific mass approach in single-phase or multiphase problems instead of solving the full compressible mathematical formulation. In addition, the differences between the literature and OB results increased as the Rayleigh number was raised, especially in the turbulent regime. The results of the NOB were closer to the literature than were those of the OB for the entire range of Rayleigh numbers tested. Therefore, the numerical results confirmed the higher accuracy of NOB compared to OB despite the NOB's still being an approximate model. Lastly, flow visualization allowed the identification of coherent turbulent structures near the cavity walls in the simulation with Rayleigh number 10 10. The presence of hairpin and Tollmien-Schlichting instabilities revealed the importance of modeling the three-dimensional effects of natural convection in the turbulent regime.
In this study, turbulent flow computations were performed on structured and unstructured meshes around the S809 airfoil. The objectives are to assess the mesh reliability for some turbulent models for numerical validation. The numerical simulations were performed an open-source computational fluid dynamics (CFD) platform code based on the Field Operation and Manipulation C++ class library for continuum mechanics (OpenFOAM). First, the turbulent flow is modeled using an unsteady incompressible Reynolds Averaged Navier-Stokes solver. Moreover, CFD computations were realized to study mesh dependency and computational cost in detail. To validate the results, comparisons of the computed aerodynamic coefficients were made with wind tunnel data from the Delft University of Technology (DUT). Finally, ways to improve the reliability of structured and unstructured meshes are discussed by comparing the results. The results show good agreement between simulations and experiments, with the structured mesh showing less error compared to the unstructured mesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.